Advertisement

Elaboration and characterization of glass–ceramic enriched by heavily manganese doped zinc silicate nanoparticles for optoelectronic applications

  • L. El Mir
Article
  • 10 Downloads

Abstract

Nanocrystallines Mn2+-doped zinc silicate (β-Zn2SiO4:Mn) embedded in SiO2 host matrix were synthesized in two steps. In the first one a sol–gel process was used for the elaboration of silica aerogel monolith enriched by ZnO:Mn nanoparticles using supercritical conditions of ethanol. In the second step a simple solid-phase reaction under natural atmosphere at 1500 °C was investigated. The structure and texture of the obtained nanocomposites were studied by X-ray diffraction and transmission electron microscopy respectively. The optical results indicate that the obtained nanocomposites have excellent luminescence properties in the visible range. In addition, the PL spectrum for the β-Zn2SiO4:Mn/SiO2 nanocomposite reveals a band centered at about 584 nm attributed to the 4T16A1 transitions of Mn2+ ions. The intensive yellow luminescence presents a red shift and the lifetime is relatively weak compared to the known luminescence properties of this material. The obtained results are attributed to the protocol used and the excess of Mn2+ ions. The linear diminishing behaviours of the PL integrate intensity with the operating temperature, and the variation of the time decay with the Mn2+ contents; make it possible to anticipate the utilization of this material in luminescence thermometry.

References

  1. 1.
    R. Selomulya, S. Ski, K. Pita, C.H. Kam, Q.Y. Zhang, S. Buddhudu, Mater. Sci. Eng. B 100, 136 (2003)CrossRefGoogle Scholar
  2. 2.
    L. El Mir, A. Amlouk, C. Barthou, J. Phys. Chem. Solids 67, 2395 (2006)CrossRefGoogle Scholar
  3. 3.
    H. Wang, Y. Ma, G. Yi, D. Chen, Mater. Chem. Phys. 82, 414 (2003)CrossRefGoogle Scholar
  4. 4.
    H.P. Rooksby, A.H. McKeag, Trans. Faraday Soc. 37, 308 (1941)CrossRefGoogle Scholar
  5. 5.
    M. Mai, C. Feldmann, J. Solid State Sci. 11, 528 (2009)CrossRefGoogle Scholar
  6. 6.
    L. El Mir, K. Omri, J. El Ghoul, A.S. AL-Hobaib, H. Dahman, C. Barthou, Superlattices Microstruct. 65, 248 (2014)CrossRefGoogle Scholar
  7. 7.
    M. Eghbali-Arani, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, S. Pourmasoud, J. Mater. Sci. 47, 3757 (2018)Google Scholar
  8. 8.
    S.S. Hosseinpour-Mashkani, A. Sobhani-Nasab, J. Mater. Sci. 28(21), 16459 (2017)Google Scholar
  9. 9.
    M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, M. Hamadanian, S. Bagheri, J. Mater. Sci. 28(20), 14965 (2017)Google Scholar
  10. 10.
    A. Sobhani-Nasab, A. Ziarati, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, Res. Chem. Intermed. 43(11), 6155 (2017)CrossRefGoogle Scholar
  11. 11.
    M.E. Arani, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, F. Ahmadi, S. Pourmasoud, Ultrason. Sonochem. 43, 120 (2018)CrossRefGoogle Scholar
  12. 12.
    A. Sobhani-Nasab, M. Rahimi-Nasrabadi, H.R. Naderi, V. Pourmohamadian, F. Ahmadi, M.R. Ganjali, H. Ehrlich, Ultrason. Sonochem. 45, 189 (2018)CrossRefGoogle Scholar
  13. 13.
    Y. Jiang, J. Chen, Z. Xie, L. Zheng, J. Mater. Chem. Phys. 120, 313 (2010)CrossRefGoogle Scholar
  14. 14.
    B. Li, J. Zhou, R. Zong, M. Fu, L. Li, Q. Li, J. Am. Ceram. Soc. 89, 2308 (2006)Google Scholar
  15. 15.
    M. Takesue, K. Shimoyama, K. Shibuki, A. Suino, Y. Hakuta, H. Hayashi, Y. Ohishi, R.L. Smith Jr., J. Supercrit. Fluids 49, 351 (2009)CrossRefGoogle Scholar
  16. 16.
    K. Omri, J. El Ghoul, A. Alyamani, C. Barthou, L. El, Mir, Physica E 53, 48 (2013)CrossRefGoogle Scholar
  17. 17.
    J. El Ghoul, K. Omri, A. Alyamani, C. Barthou, L. El Mir, J. Luminesc. 138, 218 (2013)CrossRefGoogle Scholar
  18. 18.
    J.El Ghoul, C. Barthou, M. Saadoun, L.El Mir, J. Physica B 405, 597 (2010)CrossRefGoogle Scholar
  19. 19.
    J. El Ghoul, K. Omri, L. El Mir, C. Barthou, S. Alaya, J. Luminesc. 132, 2288 (2012)CrossRefGoogle Scholar
  20. 20.
    Q. Bin, Z.L. Tang, Z.T. Zhang, X.X. Wang, Rare Metal Mater. Eng. 32, 711 (2003)Google Scholar
  21. 21.
    A. Manavbasi, J.C. LaCombe, J. Mater. Sci. 42, 252 (2007)CrossRefGoogle Scholar
  22. 22.
    Y.C. Kang, H.D. Park, Appl. Phys. A 77, 529 (2003)CrossRefGoogle Scholar
  23. 23.
    A. Roy, S. Polarz, S. Rabe, B. Rellinghaus, H. Zahres, F.E. Kruis, M. Driess, Chem. Eur. J. 10, 1565 (2004)CrossRefGoogle Scholar
  24. 24.
    H.F. Wang, Y.Q. Ma, G.S. Yi, D.P. Chen, Mater. Chem. Phys. 82, 414 (2003)CrossRefGoogle Scholar
  25. 25.
    R. Morimo, K. Matae, Mater Res Bull. 24, 175 (1989)CrossRefGoogle Scholar
  26. 26.
    Q.H. Li, S. Komaraneni, R. Roy, J. Mater. Sci. 30, 2358 (1995)CrossRefGoogle Scholar
  27. 27.
    L. Reybaud, C. Broca-Cabarreq, A. Mosset, H. Ahamdane, Mater. Res. Bull. 31, 1133 (1996)CrossRefGoogle Scholar
  28. 28.
    H.-K. Jung, D.-S. Park, Y.C. Park, Mater. Res. Bull. 34, 43 (1999)CrossRefGoogle Scholar
  29. 29.
    I.F. Chang, J.W. Brownlow, T.I. Sun, J.S. Wilson, J. Electrochem Soc. 136, 3532 (1989)CrossRefGoogle Scholar
  30. 30.
    B.D. Cullity, Elements of X-ray Diffractions (Addison-Wesley, Reading, 1978)Google Scholar
  31. 31.
    S. Karamat, S. Mahmood, J.J. Lin, Z.Y. Pan, P. Lee, T.L. Tan, S.V. Springhama, R.V. Ramanujan, R.S. Rawat, Appl. Surf. Sci. 254, 7285 (2008)CrossRefGoogle Scholar
  32. 32.
    K.P. Bhatti, S. Chaudhary, D.K. Pandya, S.C. Kashyap, Solid State Commun. 136, 384 (2005)CrossRefGoogle Scholar
  33. 33.
    J. Han, P. Mantas, A. Senos, J. Eur. Ceram. Soc. 20, 2753 (2000)CrossRefGoogle Scholar
  34. 34.
    K.K. Nagaraja, S. Pramodini, A. Santhosh Kumar, H.S. Nagaraja, P. Poornesh, D. Kekuda, Opt. Mater. 35, 431 (2013)CrossRefGoogle Scholar
  35. 35.
    Y.Q. Chang, D.B. Wang, X.H. Luo, X.Y. Xu, X.H. Chen, L. Li, C.P. Chen, R.M. Wang, J. Xu, D.P. Yu, Appl. Phys Lett. 83, 4020 (2003)CrossRefGoogle Scholar
  36. 36.
    L. El Mir, A. Amlouk, C. Barthou, S. Alaya, J. Physica B 388, 412 (2007)CrossRefGoogle Scholar
  37. 37.
    L.El Mir, J. El Ghoul, S. Alaya, M. Ben Salem, C. Barthou, H.J. von Bardeleben, Physica B 403, 1770 (2008)CrossRefGoogle Scholar
  38. 38.
    C. Barthou, J. Benoit, P. Benalloul, A. Morell, J. Electrochem. Soc. 141, 524 (1994)CrossRefGoogle Scholar
  39. 39.
    , K. Omri, Superlattices Microstruct. 55, 89 (2014)Google Scholar
  40. 40.
    K. Omri, O.M. Lemine, L. El Mir, Ceram. Int. 43, 6585 (2017)CrossRefGoogle Scholar
  41. 41.
    K. Omri, A. Alyamani, L.El Mir, Appl. Phys. A 124, 215 (2018)CrossRefGoogle Scholar
  42. 42.
    S. Dembski, S. Ruppa, M. Milde, C. Gellermann, M. Dyrba, S. Schweizer, M. Batentschuk, A. Osvet, A. Winnacker, J. Opt. Mater. 33, 1106 (2011)CrossRefGoogle Scholar
  43. 43.
    X. Li, F. Chen, Mater. Res. Bull. 48, 2304 (2013)CrossRefGoogle Scholar
  44. 44.
    K.C. Mishra, K.H. Johnson, B.G. DeBoer, J.K. Berkowitz, J. Olsen, E.A. Dale, J. Lumin. 47, 197 (1991)CrossRefGoogle Scholar
  45. 45.
    A. Morell, N. El Khiati, J. Electrochem. Soc. 140, 2019 (1993)CrossRefGoogle Scholar
  46. 46.
    L.E. Orgel, J. Chem. Phys. 23, 1004 (1955)CrossRefGoogle Scholar
  47. 47.
    L. Xiong, J. Shi, J. Gu, L. Li, W. Huang, J. Gao, M. Ruan, J. Phys. Chem. B 109, 731 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departement of Physics, College of SciencesAl Imam Mohammad Ibn Saud Islamic University (IMSIU)RiyadhSaudi Arabia
  2. 2.Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE), Faculty of Sciences in GabesGabes UniversityGabèsTunisia

Personalised recommendations