Advertisement

Substrate temperature effect during the deposition of (Cu/Sn/Cu/Zn) stacked precursor CZTS thin film deposited by electron-beam evaporation

  • E. M. Mkawi
  • Y. Al-Hadeethi
  • E. Shalaan
  • Elena Bekyarova
Article
  • 19 Downloads

Abstract

Kesterite-Cu2ZnSnS4 (CZTS) thin films were deposited on molybdenum (Mo) coated glass substrates using electron-beam evaporation from stacked layer precursor (Cu/Sn/Cu/Zn). Influence of substrate temperatures during the deposition on the morphological, optical and structural properties of CZTS thin films were investigated using FE-SEM, EDS, Raman, UV–Vis and XRD methods. X-ray diffraction studies revealed that CZTS films deposited at 310 °C possess kesterite structure with preferential growth along (112) plane. FE-SEM studies revealed that the surface of the CZTS film contains spherical shaped grains distributed on the surface, the surface becomes smooth and the grain size increases with increase of the substrate temperature. Size, shape, and distribution of the elements and their effect on the CZTS films surface were studied as a function of substrate temperature. With increase of substrate temperature, the band gap value of CZTS thin films reduce from 1.46 to 1.11 eV. At 310 °C, Hall coefficient study showed that the CZTS film has p-type conductivity with low resistivity of 4.23 Ω cm. Solar cells were fabricated on a soda lime glass (SLG) substrate with the following structure SLG/Mo/Cu2ZnSnS4/CdS/i-ZnO Al:ZnO/Al. The optimized solar cell has a conversion efficiency of 2.4% with Jsc = 12.5 mA/cm2, Voc = 332 mV and FF = 58.0.

Notes

Acknowledgements

This work was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under Grant No. 130-26-D1439. The authors, therefore, acknowledge with thanks the DSR technical and financial support.

References

  1. 1.
    A. Chirila, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A.R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, Nat. Mater. 10, 857 (2011)CrossRefGoogle Scholar
  2. 2.
    S.W. Shin, S. Pawar, C.Y. Park, J.H. Yun, J.-H. Moon, J.H. Kim, J.Y. Lee, Sol. Energy Mater. Sol. Cells 95, 3202 (2011)CrossRefGoogle Scholar
  3. 3.
    U. Ghorpade, M. Suryawanshi, S.W. Shin, K. Gurav, P. Patil, S. Pawar, C.W. Hong, J.H. Kim, S. Kolekar, Chem. Commun. 50, 11258 (2014)CrossRefGoogle Scholar
  4. 4.
    U.V. Ghorpade, M.P. Suryawanshi, S.W. Shin, C.W. Hong, I. Kim, J.H. Moon, J.H. Yun, J.H. Kim, S.S. Kolekar, Phys. Chem. Chem. Phys. 17, 19777 (2015)CrossRefGoogle Scholar
  5. 5.
    R. Chalapathy, G.S. Jung, B.T. Ahn, Sol. Energy Mater. Sol. Cells 95, 3216 (2011)CrossRefGoogle Scholar
  6. 6.
    K. Wang, O. Gunawan, T. Todorov, B. Shin, S. Chey, N. Bojarczuk, D. Mitzi, S. Guha, Appl. Phys. Lett. 97, 143508 (2010)CrossRefGoogle Scholar
  7. 7.
    J. Ge, Y. Wu, C. Zhang, S. Zuo, J. Jiang, J. Ma, P. Yang, J. Chu, Appl. Surf. Sci. 258, 7250 (2012)CrossRefGoogle Scholar
  8. 8.
    A. Wangperawong, J. King, S. Herron, B. Tran, K. Pangan-Okimoto, S. Bent, Thin Solid Films 519, 2488 (2011)CrossRefGoogle Scholar
  9. 9.
    Z. Su, C. Yan, K. Sun, Z. Han, F. Liu, J. Liu, Y. Lai, J. Li, Y. Liu, Appl. Surf. Sci. 258, 7678 (2012)CrossRefGoogle Scholar
  10. 10.
    Z. Su, C. Yan, D. Tang, K. Sun, Z. Han, F. Liu, Y. Lai, J. Li, Y. Liu, CrystEngComm 14, 782 (2012)CrossRefGoogle Scholar
  11. 11.
    K. Tanaka, M. Kurokawa, K. Moriya, H. Uchiki, J. Alloy. Compd. 571, 98 (2013)CrossRefGoogle Scholar
  12. 12.
    J. He, L. Sun, N. Ding, H. Kong, S. Zuo, S. Chen, Y. Chen, P. Yang, J. Chu, J. Alloy. Compd. 529, 34 (2012)CrossRefGoogle Scholar
  13. 13.
    K. Gurav, S. Pawar, S.W. Shin, G. Agawane, P. Patil, J.-H. Moon, J. Yun, J.H. Kim, Appl. Surf. Sci. 283, 74 (2013)CrossRefGoogle Scholar
  14. 14.
    S. Chen, X. Gong, A. Walsh, S.-H. Wei, Appl. Phys. Lett. 94, 041903 (2009)CrossRefGoogle Scholar
  15. 15.
    J. Hein, H. Morgner, K. Häfner, 24th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, (2009) p. 2800Google Scholar
  16. 16.
    E. Mkawi, K. Ibrahim, M. Ali, M. Farrukh, N.K. Allam, Superlattice Microstruct. 76, 339 (2014)CrossRefGoogle Scholar
  17. 17.
    Y.L. Zhou, W.H. Zhou, Y.F. Du, M. Li, S.X. Wu, Mater. Lett. 65, 1535 (2011)CrossRefGoogle Scholar
  18. 18.
    X. Lu, Z. Zhuang, Q. Peng, Y. Li, Chem. Commun. 47, 3141 (2011)CrossRefGoogle Scholar
  19. 19.
    J.I. Pankove, Optical Processes in Semiconductors, (Courier Corporation, Chelmsford, 2012)Google Scholar
  20. 20.
    A. Khare, B. Himmetoglu, M. Cococcioni, E.S. Aydil, J. Appl. Phys. 111, 123704 (2012)CrossRefGoogle Scholar
  21. 21.
    Y. Lin, S. Ikeda, W. Septina, Y. Kawasaki, T. Harada, M. Matsumura, Sol. Energy Mater. Sol. Cells 120, 218 (2014)CrossRefGoogle Scholar
  22. 22.
    F. Jiang, S. Ikeda, T. Harada, M. Matsumura, Adv. Energy Mater. 4, 1301381 (2014)CrossRefGoogle Scholar
  23. 23.
    H. Park, Y.H. Hwang, B.-S. Bae, J. Sol-Gel. Sci. Technol. 65, 23 (2013)CrossRefGoogle Scholar
  24. 24.
    D.R. Harshman, R.N. Kleiman, R.C. Haddon, S.V. Chichester-Hicks, M.L. Kaplan, L.W. Rupp, T. Pfiz, D.L. Williams, D. Mitzi, Phys. Rev. Lett. 64, 1293 (1990)CrossRefGoogle Scholar
  25. 25.
    M. Snure, A. Tiwari, Appl. Phys. Lett. 91, 092123 (2007)CrossRefGoogle Scholar
  26. 26.
    S.G. Lee, J. Kim, H.S. Woo, Y. Jo, A. Inamdar, S. Pawar, H.S. Kim, W. Jung, H.S. Im, Curr. Appl. Phys. 14, 254 (2014)CrossRefGoogle Scholar
  27. 27.
    M. Wei, Q. Du, D. Wang, W. Liu, G. Jiang, C. Zhu, Mater. Lett. 79, 177 (2012)CrossRefGoogle Scholar
  28. 28.
    H.P. Liu, D. Nishide, T. Tanaka, H. Kataura, Nat. Commun. 2, 309 (2011)CrossRefGoogle Scholar
  29. 29.
    L.I. Maissel, R. Glang, Handbook of Thin Film Technology, (McGraw-Hill, New York, 1970)Google Scholar
  30. 30.
    M. Tokumoto, A.G. Swanson, J.S. Brooks, C.C. Agosta, S.T. Hannah, N. Kinoshita, H. Anzai, M. Tamura, H. Tajima, H. Kuroda, J.R. Anderson, Organic, Superconductivity, (Plenum, New York, 1990), pp. 167–190CrossRefGoogle Scholar
  31. 31.
    P. Fernandes, P. Salomé, A. Sartori, J. Malaquias, A. Da Cunha, B.-A. Schubert, J. González, G. Ribeiro, Sol. Energy Mater. Sol. Cells 115, 157 (2013)CrossRefGoogle Scholar
  32. 32.
    A. Redinger, D.M. Berg, P.J. Dale, R. Djemour, L. Gütay, T. Eisenbarth, N. Valle, S. Siebentritt, IEEE J. Photovolt. 1, 200 (2011)CrossRefGoogle Scholar
  33. 33.
    Y. Pei, J. Guo, D. Kou, W. Zhou, Z. Zhou, Q. Tian, Y. Meng, S. Wu, Sol. Energy 148, 157 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • E. M. Mkawi
    • 1
    • 2
  • Y. Al-Hadeethi
    • 1
  • E. Shalaan
    • 1
  • Elena Bekyarova
    • 3
  1. 1.Department of Physics, College of ScienceKing Abdulaziz UniversityJudahSaudi Arabia
  2. 2.Center of NanotechnologyKing Abdulaziz UniversityJudahSaudi Arabia
  3. 3.Department of ChemistryUniversity of CaliforniaRiversideUSA

Personalised recommendations