Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 23, pp 20462–20469 | Cite as

Macroscopic effects and microscopic origins of gamma-ray irradiation on In-doped CdZnTe crystal

  • Ruihua NanEmail author
  • Tao Li
  • Zengyun Jian
  • Gang Xu
  • Xiaojuan Li


The effects of gamma-ray irradiation, exposed to a 60Co source with a dose of 2.7 kGy, on In-doped CdZnTe (CdZnTe:In) crystal were investigated. We combined the “macroscopic” electrical properties of CdZnTe:In sample, evaluated by current–voltage (I–V) measurements at different temperature, with the “microscopic” origins of electrically active defects induced by gamma-irradiation, characterized by thermally stimulated current spectroscopy. It reveals that the bulk resistivity at room temperature have increased from 2.7 × 109 Ω cm for the as-grown CdZnTe:In sample to 5.9 × 109 Ω cm for the irradiated sample. Since the microscopic origins of these macroscopic effects are linked to the electrically active defects within the material, five main defect states (I, II, III, IV and V) were characterized and identified in the CdZnTe:In crystal. In particular, the introduction of gamma-irradiation altered the trap concentrations of these defect states, such as the rapidly decreasing concentration of region I. Besides, the gamma-ray irradiation caused a further deepening of EDD level (region V) from the value of 0.717 ± 0.004 eV for the as-grown sample to the value of 0.749 ± 0.004 eV for the irradiated sample. The microscopic origin of EDD level was identified with TeCd2+ below the conduction band minimum, which is responsible for the pinning of EF level near the mid-gap, and thus for the observed high-resistivity performance of CdZnTe:In.



This work was supported by the National Natural Science Foundation of China (Grant Nos. 51502234 and 51602242), the Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2018JM5097), and the fund of the State Key Laboratory of Solidification Processing in NWPU of China (No. SKLSP201410).

Compliance with ethical standards

Conflict of interest

We have no conflicts of interest to declare.


  1. 1.
    T.E. Schlesinger, J.E. Toney, H. Yoon, E.Y. Lee, B.A. Brunett, L. Franks, R.B. James, Cadmium zinc telluride and its use as a nuclear radiation detector material. Mater. Sci. Eng. R 32, 103–189 (2001)CrossRefGoogle Scholar
  2. 2.
    R. Nan, W. Jie, G. Zha, B. Wang, Y. Xu, H. Yu, Irradiation-induced defects in Cd0.9Zn0.1Te:Al. J. Electron. Mater. 41, 3044–3049 (2012)CrossRefGoogle Scholar
  3. 3.
    G. Prekas, P.J. Sellin, P. Veeramani, A.W. Davies, A. Lohstroh, M.E. Ozsan, M.C. Veale, Investigation of the internal electric field distribution under in situ X-ray irradiation and under low temperature conditions by the means of the Pockels effect. J. Phys. D 43, 085102 (2010)CrossRefGoogle Scholar
  4. 4.
    R. Gul, A. Bolotnikov, H.K. Kim, R. Rodriguez, K. Keeter, Z. Li, G. Gu, R.B. James, Point defects in CdZnTe crystals grown by different techniques. J. Electron. Mater. 40, 274–279 (2011)CrossRefGoogle Scholar
  5. 5.
    R. Gul, K. Keeter, R. Rodriguez, A.E. Bolotnikov, A. Hossain, G.S. Camarda, K.H. Kim, G. Yang, Y. Cui, V. Carcelen, J. Franc, Z. Li, R.B. James, Point defects in Pb-, Bi-, and In-doped CdZnTe detectors: deep-Level transient spectroscopy (DLTS) measurements. J. Electron. Mater. 41, 488–493 (2012)CrossRefGoogle Scholar
  6. 6.
    A. Cavallini, L. Polenta, Irradiation effects on the compensation of semi-insulating GaAs for particle detector applications. J. Appl. Phys. 98, 023708 (2005)CrossRefGoogle Scholar
  7. 7.
    B. Fraboni, L. Pasquini, A. Castaldini, A. Cavallini, P. Siffert, X-ray irradiation effects on the trapping properties of Cd1−xZnxTe detectors. J. Appl. Phys. 106, 093713 (2009)CrossRefGoogle Scholar
  8. 8.
    B. Fraboni, D. Cavalcoli, A. Cavallini, P. Fochuk, Electrical activity of deep traps in high resistivity CdTe: spectroscopic characterization. J. Appl. Phys. 105, 073705 (2009)CrossRefGoogle Scholar
  9. 9.
    R. Gul, U.N. Roy, R.B. James, An analysis of point defects induced by In, Al, Ni, and Sn dopants in Bridgman-grown CdZnTe detectors and their influence on trapping of charge carriers. J. Appl. Phys. 121, 115701 (2017)CrossRefGoogle Scholar
  10. 10.
    R. Gul, U.N. Roy, G.S. Camarda, A. Hossain, G. Yang, P. Vanier, V. Lordi, J. Varley, R.B. James, A comparison of point defects in Cd1−xZnxTe1−ySey crystals grown by Bridgman and traveling heater methods. J. Appl. Phys. 121, 125705 (2017)CrossRefGoogle Scholar
  11. 11.
    Y.K. Mishra, R. Adelung, ZnO tetrapod materials for functional applications. Mater. Today 21, 631–651 (2018)CrossRefGoogle Scholar
  12. 12.
    E.Y. Lee, R.B. James, R.W. Olsen, H. Hermon, Compensation and trapping in CdZnTe radiation detectors studied by thermoelectric emission spectroscopy, thermally stimulated conductivity, and current-voltage measurements. J. Electron. Mater. 28, 766–773 (1999)CrossRefGoogle Scholar
  13. 13.
    A. Cavallini, B. Fraboni, W. Dusi, M. Zanarini, P. Siffert, Deep levels and compensation in γ-irradiated CdZnTe. Appl. Phys. Lett. 77, 3212–3214 (2000)CrossRefGoogle Scholar
  14. 14.
    A.E. Bolotnikov, S.E. Boggs, C.M.H. Chen, W.R. Cook, F.A. Harrison, S.M. Schindler, Properties of Pt Schottky type contacts on high-resistivity CdZnTe detectors. Nucl. Instrum. Methods Phys. Res. A 482, 395–407 (2002)CrossRefGoogle Scholar
  15. 15.
    Y. Xu, W. Jie, P.J. Sellin, T. Wang, L. Fu, G. Zha, P. Veeramani, Characterization of CdZnTe crystals grown using a seeded modified vertical Bridgman method. IEEE Trans. Nucl. Sci. 56, 2808–2813 (2009)CrossRefGoogle Scholar
  16. 16.
    G. Zha, J. Yang, L. Xu, T. Feng, N. Wang, W. Jie, The effects of deep level traps on the electrical properties of semi-insulating CdZnTe. J. Appl. Phys. 115, 043715 (2014)CrossRefGoogle Scholar
  17. 17.
    V. Babentsov, J. Franc, R.B. James, Compensation and carrier trapping in indium-doped CdTe: contributions from an important near-mid-gap donor. Appl. Phys. Lett. 94, 052102 (2009)CrossRefGoogle Scholar
  18. 18.
    N.N. Kolesnikov, A.A. Kolchin, D.L. Alov, Y.N. Ivanov, A.A. Chernov, M. Schieber, H. Hermon, R.B. James, M.S. Goorsky, H. Yoon, J. Toney, B. Brunett, T.E. Schlesinger, Growth and characterization of p-type Cd1−xZnxTe (x = 0.2, 0. 0.4). J. Cryst. Growth 174(3), 256–262 (1997)CrossRefGoogle Scholar
  19. 19.
    J.M. Francou, K. Saminadayarm, J.L. Pautrat, Shallow donors in CdTe. Phys. Rev. B 41, 12035–12046 (1990)CrossRefGoogle Scholar
  20. 20.
    R. Nan, T. Li, G. Xu, Z. Jian, X. Li, Distribution of microscopic defects in Al-doped CdZnTe crystal. J. Mater. Sci. 53, 4387–4394 (2018)CrossRefGoogle Scholar
  21. 21.
    A. Cavallini, B. Faboni, W. Dusi, Compensation processes in CdTe-based compounds. IEEE Trans. Nucl. Sci. 52, 1964–1967 (2005)CrossRefGoogle Scholar
  22. 22.
    L. Xu, W. Jie, G. Zha, Y. Xu, X. Zhao, T. Feng, L. Luo, W. Zhang, R. Nan, T. Wang, Radiation damage on CdZnTe:In crystals under high dose 60Co γ-rays. CrystEngComm 15, 10304–10310 (2013)CrossRefGoogle Scholar
  23. 23.
    Y. Xu, W. Jie, T. Wang, P. Yu, Y. He, L. Fu, P. Sellin, Morphology evolution of micron-scale secondary phases in CdZnTe crystals grown by vertical Bridgman method. J. Alloys Compd. 509, 2338–2342 (2011)CrossRefGoogle Scholar
  24. 24.
    A.E. Bolotnikov, S. Babalola, G.S. Camarda, Y. Cui, R. Gul, S.U. Egarievwe, P.M. Fochuk, M. Fuerstnau, J. Horace, A. Hossain, F. Jones, K.H. Kim, O.V. Kopach, B. McCall, L. Marchini, B. Raghothamachar, R. Taggart, G. Yang, L. Xu, R.B. James, Correlations between crystal defects and performance of CdZnTe detectors. IEEE Trans. Nucl. Sci. 58, 1972–1980 (2011)CrossRefGoogle Scholar
  25. 25.
    M.A. Berding, Native defects in CdTe. Phys. Rev. B 60, 8943–8950 (1999)CrossRefGoogle Scholar
  26. 26.
    P. Emanuelsson, P. Omling, B. Meyer, M. Wienecke, M. Schenk, Identification of the cadmium vacancy in CdTe by electron paramagnetic resonance. Phys. Rev. B 47, 15578–15580 (1993)CrossRefGoogle Scholar
  27. 27.
    R. Nan, T. Wang, G. Xu, M. Zhu, W. Jie, Compensation processes in high-resistivity CdZnTe crystals doped with In/Al. J. Cryst. Growth 451, 150–154 (2016)CrossRefGoogle Scholar
  28. 28.
    M. Pavlović, M. Jakšić, H. Zorc, Z. Medunić, Identification of deep trap levels from thermally stimulated current spectra of semi-insulating CdZnTe detector material. J. Appl. Phys. 104, 023525 (2008)CrossRefGoogle Scholar
  29. 29.
    M. Chu, S. Terterian, D. Ting, C.C. Wang, H.K. Gurgenian, S. Mesropian, Tellurium antisites in CdZnTe. Appl. Phys. Lett. 79, 2728–2730 (2001)CrossRefGoogle Scholar
  30. 30.
    Y. Xu, W. Jie, P. Sellin, T. Wang, W. Liu, G. Zha, P. Veeramani, C. Mills, Study on temperature dependent resistivity of indium-doped cadmium zinc telluride. J. Phys. D 42, 035105 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials and Chemical EngineeringXi’an Technological UniversityXi’anChina
  2. 2.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations