Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 23, pp 20415–20423 | Cite as

Effect of zinc particle mixing on properties of copper–nanoparticle/bismuth–tin solder hybrid joints

  • Toshikazu SatohEmail author
  • Masanori Usui


The effects of Zn particle mixing into a Cu–nanoparticle/Bi–Sn solder hybrid bonding were examined. The bonding strength of an SiC/direct-bonded-copper joint exhibited limited dependence on the Zn mixing ratio, whereas that of an SiC/Cu joint increased with the Zn mixing ratio, up to 20 wt%. In the samples, Zn was present throughout the entire bonding layer, except for the Bi phase region. Bi segregation at the interface region, which occupies more volume in the SiC/Cu joints and impairs the bonding strength, reduced with the mixing ratio of Zn. Simultaneously, the volume fraction of the intermetallic compound involving Sn in the bonding layer increased. These phenomena could increase the interfacial strength, which reflects the bonding strength. However, at a Zn mixing ratio exceeding 20 wt%, the bonding strength decreased with increased Zn mixing ratio, independent of the joint structure, because of the increasing number of micro-voids generated in the bonding layer. The findings of this study indicate that mixing Zn powder into a Cu–nanoparticle/Bi–Sn solder hybrid bonding enables high bonding strength, even in joints composed of substances having strongly different thermal expansion coefficients, such as SiC and Cu.


  1. 1.
    P.G. Neudeck, R.S. Okojie, L.Y. Chen, Proc. IEEE 90, 1065 (2002)CrossRefGoogle Scholar
  2. 2.
    G. Liu, B.R. Tuttle, S. Dhar, Appl. Phys. Rev. 2, 021307 (2015)CrossRefGoogle Scholar
  3. 3.
    T. Kimoto, Jpn. J. Appl. Phys. 54, 040103 (2015)CrossRefGoogle Scholar
  4. 4.
    H.S. Chin, K.Y. Cheong, A.B. Ismail, Metall. Mater. Trans. B 41, 824 (2010)CrossRefGoogle Scholar
  5. 5.
    T. Laurila, V. Vuorinen, J.K. Kivilahti, Mater. Sci. Eng. R 49, 1 (2005)CrossRefGoogle Scholar
  6. 6.
    H. Ma, J.C. Suhling, J. Mater. Sci. 44, 1141 (2009)CrossRefGoogle Scholar
  7. 7.
    L. Zhang, C. He, Y. Guo, J. Han, Y. Zhang, X. Wang, Microelectron. Reliab. 52, 559 (2012)CrossRefGoogle Scholar
  8. 8.
    E. Ide, S. Angata, A. Hirose, K.F. Kobayashi, Acta Mater. 53, 2385 (2005)CrossRefGoogle Scholar
  9. 9.
    K.S. Siow, J. Electron. Mater. 43, 947 (2014)CrossRefGoogle Scholar
  10. 10.
    T. Ishizaki, R. Watanabe, J. Mater. Chem. 22, 25198 (2012)CrossRefGoogle Scholar
  11. 11.
    T. Ishizaki, T. Satoh, A. Kuno, A. Tane, M. Yanase, F. Osawa, Y. Yamada, Microelectron. Reliab. 53, 1543 (2013)CrossRefGoogle Scholar
  12. 12.
    T. Yamakawa, T. Takemoto, M. Shimoda. H. Nishikawa, K. Shiokawa, N. Terada, J. Electron. Mater. 42, 1260 (2013)CrossRefGoogle Scholar
  13. 13.
    Y. Kobayashi, T. Shirochi, Y. Yasuda, T. Morita, Int. J. Adhes. Adhes. 33, 50 (2012)CrossRefGoogle Scholar
  14. 14.
    J. Liu, H. Chen, H. Ji, M. Li, ACS Appl. Mater. Interfaces 8, 33289 (2016)CrossRefGoogle Scholar
  15. 15.
    J. Li, C.M. Johnson, C. Buttay, W. Sabbah, S. Azzopardi, J. Mater. Process. Technol. 215, 299 (2015)CrossRefGoogle Scholar
  16. 16.
    Ph Buffat, J.P. Borel, Phys. Rev. A 13, 2287 (1976)CrossRefGoogle Scholar
  17. 17.
    T. Ishizaki, K. Akedo, T. Satoh, R. Watanabe, J. Electron. Mater. 43, 774 (2014)CrossRefGoogle Scholar
  18. 18.
    T. Satoh, T. Ishizaki, K. Akedo, J. Electron. Mater. 46, 1279 (2017)CrossRefGoogle Scholar
  19. 19.
    T. Satoh, T. Ishizaki, M. Usui, Mater. Des. 124, 203 (2017)CrossRefGoogle Scholar
  20. 20.
    S. Tajima, T. Satoh, T. Ishizaki, M. Usui, J. Mater. Sci. 28, 1764 (2017)Google Scholar
  21. 21.
    T. Satoh, T. Ishizaki, M. Usui, J. Mater. Sci. 29, 7161 (2018)Google Scholar
  22. 22.
    B. Predel, Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys B–Ba–C–Zr, in Landolt-Börnstein—Group IV Physical Chemistry vol. 5B, ed. By O. Madelung (Springer, Berlin, 1992), Accessed 14 July 2015
  23. 23.
    J. Gröbner, Bi–Sn–Zn (Bismuth–Tin–Zinc), in Landolt-Börnstein—Group IV Physical Chemistry 11C3 (Non-Ferrous Metal Systems. Part 3), ed. By G. Effenberg, S. Ilyenko (Springer, Berlin, 2007). Accessed 9 July 2018
  24. 24.
    P. Villars (Chief Editor), Cu–Zn Binary Phase Diagram 0–100 at.% Zn, in PAULING FILE in Inorganic Solid Phases, SpringerMaterials (online database), Springer, Heidelberg (ed.) (Springer, Berlin, 2016), Accessed 22 Mar 2016
  25. 25.
    Y. Yanaka, Y. Kariya, H. Watanabe, H. Hokazono, Mater. Trans. 57, 819 (2016)CrossRefGoogle Scholar
  26. 26.
    W.H. Tao, C. Chen, C.E. Ho, W.T. Chen, C.R. Kao, Chem. Mater. 13, 1051 (2001)CrossRefGoogle Scholar
  27. 27.
    T. Shimizu, H. Ishikawa, I. Ohnuma, K. Ishida, J. Electron. Mater. 28, 1172 (1999)CrossRefGoogle Scholar
  28. 28.
    G.J. Exarhos, A. Rose, L.Q. Wang, C.F. Windisch Jr., J. Vac. Sci. Technol. A 16, 1926 (1998)CrossRefGoogle Scholar
  29. 29.
    Y.C. Lin, Y.C. Jiang, J.H. Jiang, Appl. Surf. Sci. 254, 2671 (2008)CrossRefGoogle Scholar
  30. 30.
    J. Sun, J. Bian, H. Liang, J. Zhao, L. Hu, Z. Zhao, W. Liu, G. Du, Appl. Surf. Sci. 253, 5161 (2007)CrossRefGoogle Scholar
  31. 31.
    T. Minami, S. Suzuki, T. Miyata, Thin Solid Films 398–399, 53 (2001)CrossRefGoogle Scholar
  32. 32.
    C. Chou, S. Chen, Acta Mater 54, 2393 (2006)CrossRefGoogle Scholar
  33. 33.
    A.D. LeClaire, G. Neumann, Diffusion of Impurities in Solid Metallic Elements, in Landolt-Börnstein—Group III Condensed Matter 26 (Diffusion in Solid Metals and Alloys), ed. by H. Mehrer (Springer, Berlin, 1990). Accessed 9 May 2018
  34. 34.
    G.P. Vassilev, K.I. Lilova, J.-C. Gachon, J. Alloys Compd. 469, 264 (2009)CrossRefGoogle Scholar
  35. 35.
    H. Bakker, Diffusion in Solid Metals and Alloys, in Landolt-Börnstein—Group III Condensed Matter 26 (Diffusion in Solid Metals and Alloys), ed. by H. Mehrer (Springer, Berlin, 1990). Accessed 26 Sept 2018
  36. 36.
    T. Satoh, K. Akedo, T. Ishizaki, J. Alloy. Compd. 582, 403 (2014)CrossRefGoogle Scholar
  37. 37.
    C. Wang, L. Zhao, Y. Lu, D. Wang, Y. Guo, S. Yang, X. Liu, J. Phase Equilib. Diffus. 35, 530 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Toyota Central R&D Labs., Inc.NagakuteJapan

Personalised recommendations