Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 23, pp 20383–20394 | Cite as

Effect of Nb and Fe co-doping on microstructure, dielectric response, ferroelectricity and energy storage density of PLZT

  • Shibnath SamantaEmail author
  • V. Sankaranarayanan
  • K. SethupathiEmail author


The studies on the effect of simultaneous doping of donor (Nb) and acceptor (Fe) (0–8 at.% of each dopant) in PLZT (Pb0.97La0.02Zr0.52Ti0.48O3), on the dielectric response, ac conductivity and ferroelectricity are reported in this article. It is observed that the value of dielectric constant decreases, dielectric loss increases (moderately) and coercive field increases upon doping of Nb and Fe together. These indicate a hardening like effect as a result of the donor–acceptor co-doping. The ferroelectric to paraelectric phase transition occurs at lower temperatures for higher doping concentrations. For undoped PLZT the Curie temperature is around 353 °C which shifts to 305 °C for 8% Nb–Fe co-doped PLZT. Microstructure studies on the surface, as well as the interior of the samples are carried out which reveal a clear difference. The grain size is observed to decrease with doping concentration. The “true switchable polarization” is deduced by positive up negative down (PUND) tests and found to decrease with doping. Fatigue behavior is found to be positively enhanced upon co-doping of 2% Nb and Fe. Leakage current tests are carried out and it is found that the samples become more ‘leaky’ upon co-doping of Nb and Fe. The energy storage density is also investigated for these Nb–Fe co-doped PLZT ceramics. The highest recoverable energy storage density is observed for 2% Nb–Fe co-doped PLZT sample and it is around 134 mJ/cm3 with an efficiency of 0.28.


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    K. Carl, K.H. Hardtl, Ferroelectrics 17, 473–486 (1977). CrossRefGoogle Scholar
  2. 2.
    A. Chandrasekaran, D. Damjanovic, N. Setter, N. Marzari, Phys. Rev. B 88(214116), 1–7 (2013). CrossRefGoogle Scholar
  3. 3.
    D. Damjanovic, Rep. Prog. Phys. 61, 1267–1324 (1998). CrossRefGoogle Scholar
  4. 4.
    R.D. Klissurska, K.G. Brooks, I.M. Reaney, C. Pawlaczyk, M. Kosec, N. Setter, J. Am. Ceram. Soc. 78, 1513–1520 (1995). CrossRefGoogle Scholar
  5. 5.
    S.-Y. Chu, T.-Y. Chen, I.T. Tsai, Integr. Ferroelectr. 58, 1293–1303 (2003). CrossRefGoogle Scholar
  6. 6.
    W.I. Lee, J.k. Lee, Mater. Res. Bull. 30, 1185–1191 (1995). CrossRefGoogle Scholar
  7. 7.
    A. Kumar, S. Reddy Emani, V.V. Bhanu Prasad, K.C. James Raju, A.R. James, J. Eur. Ceram. Soc. 36, 2505–2511 (2016). CrossRefGoogle Scholar
  8. 8.
    B.W. Lee, E.J. Lee, J. Electroceram. 17, 597–602 (2006). CrossRefGoogle Scholar
  9. 9.
    S. Samanta, V. Sankaranarayanan, K. Sethupathi, M.S. Ramachandra Rao, Vaccum (2018). CrossRefGoogle Scholar
  10. 10.
    D. Mukherjee, M. Hordagoda, D. Pesquera, D. Ghosh, J.L. Jones, P. Mukherjee, S. Witanachchi, Phys. Rev. B 95, 174304, (2017). CrossRefGoogle Scholar
  11. 11.
    H.-J. Kleebe, S. Lauterbach, L. Silvestroni, H. Kungl, M.J. Hoffmann, E. Erdem, R.d.-A. Eichel, Appl. Phys. Lett. 94, 142901, (2009). CrossRefGoogle Scholar
  12. 12.
    S. Samanta, M. Muralidhar, V. Sankaranarayanan, K. Sethupathi, M.S. Ramachandra Rao, M. Murakami, J. Mater. Sci. 52, 13012–13022 (2017). CrossRefGoogle Scholar
  13. 13.
    D. Guo, K. Cai, Y. Wang, J. Mater. Chem. C 5, 2531–2541 (2017). CrossRefGoogle Scholar
  14. 14.
    Z. Pan, L. Yao, J. Zhai, B. Shen, H. Wang, Compos. Sci. Technol. 147, 30–38 (2017). CrossRefGoogle Scholar
  15. 15.
    V. Dimza, A.I. Popov, L. Lāce, M. Kundzins, K. Kundzins, M. Antonova, M. Livins, Curr. Appl. Phys. 17, 169–173 (2017). CrossRefGoogle Scholar
  16. 16.
    A. Johnscher, Dielectric Relaxation in Solids (Chelsea Dielectrics Press Limited, London, 1983), p. 89Google Scholar
  17. 17.
    A.K. Jonscher, J. Phys. D Appl. Phys. 32, R57–R70 (1999). CrossRefGoogle Scholar
  18. 18.
    D.P. Almond, C.R. Bowen, Phys. Rev. Lett. 92, 157601, (2004). CrossRefGoogle Scholar
  19. 19.
    J. Portelles, N.S. Almodovar, J. Fuentes, O. Raymond, J. Heiras, J.M. Siqueiros, J. Appl. Phys. 104, 073511, (2008). CrossRefGoogle Scholar
  20. 20.
    S.K.S. Parashar, R.N.P. Choudhary, B.S. Murty, Mater. Sci. Eng. B 110, 58–63 (2004). CrossRefGoogle Scholar
  21. 21.
    B. Angadi, P. Victor, V.M. Jali, M.T. Lagare, R. Kumar, S.B. Krupanidhi, Mater. Sci. Eng. B, 100, 93–101 (2003), CrossRefGoogle Scholar
  22. 22.
    M. Zheng, Y. Hou, Z. Ai, M. Zhu, J. Appl. Phys. 116, 124110, (2014). CrossRefGoogle Scholar
  23. 23.
    W. Qiu, H.H. Hng, Ceram. Int. 30, 2171–2176 (2004). CrossRefGoogle Scholar
  24. 24.
    L. Jin, Z. He, D. Damjanovic, Appl. Phys. Lett. 95, 012905, (2009). CrossRefGoogle Scholar
  25. 25.
    R. Yimnirun, R. Wongmaneerung, S. Wongsaenmai, A. Ngamjarurojana, S. Ananta, Y. Laosiritaworn, Appl. Phys. Lett. 90, 112908, (2007). CrossRefGoogle Scholar
  26. 26.
    S. Zhang, J.B. Lim, H.J. Lee, T.R. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 56, 1523–1527 (2009). CrossRefGoogle Scholar
  27. 27.
    K. Prabakar, S.P. Mallikarjun Rao, J. Alloys Compd. 437, 302–310 (2007). CrossRefGoogle Scholar
  28. 28.
    T. Joe. Evans Jr., Hysteresis vs PUND - They are Equivalent (Understanding Ferroelectric Materials, Support documents, Radiant Technologies Inc.) August 1, 2008,
  29. 29.
    T. Haccart, D. Remiens, E. Cattan, Thin Solid Films 423, 235–242 (2003). CrossRefGoogle Scholar
  30. 30.
    T. Sreesattabud, B.J. Gibbons, A. Watcharapasorn, S. Jiansirisomboon, Ceram. Int. 39, S521–S524 (2013). CrossRefGoogle Scholar
  31. 31.
    X. Zhao, Z. Zhou, R. Liang, F. Liu, X. Dong, Ceram. Int. 43, 9060–9066 (2017). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology Madras (IITM)ChennaiIndia

Personalised recommendations