Advertisement

Design and synthesis of bandgap tailored porous Ag/NiO nanocomposite: an effective visible light active photocatalyst for degradation of organic pollutants

  • Saravanakumar Karunamoorthy
  • Muthuraj Velluchamy
Article
  • 3 Downloads

Abstract

In this work, a series of novel visible light driven Ag/NiO nanocomposites were synthesized via a facile one-pot hydrothermal method. The phase structure, morphology and optical properties of the as-prepared materials were characterized by various tools including X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, high resolution transmission electron microscopy, energy dispersive X-ray analysis with mapping, the Brunauer–Emmett–Teller surface area, UV–Vis diffuse reflectance spectroscopy and photoluminescence spectroscopy. Ag/NiO nanocomposites have strong visible-light absorption and narrow energy bandgap of 2.55–3.01 eV, and exhibit excellent photocatalytic activity than pure NiO on the degradation of sunset yellow (SY) and tartrazine under visible light irradiation. The incorporation of Ag into NiO can decrease the bandgap, enhance the photoinduced interfacial charge transfer, and therefore increase the charge separation efficiency during the photocatalytic process. In addition, the Ag nanoparticles served as an electron trap site and prolong lifetime of the charge separation state. Among the series of synthesized Ag/NiO nanocomposites, (5%) Ag/NiO nanocomposite display higher separation of photo-induced charge carriers, which could be mainly responsible for the outstanding photocatalytic activity. The radicals trapping experimental results revealed that photogenerated O2· and ·OH radicals were the main reactive species for the degradation of SY. These combined effects endowed the Ag/NiO nanocomposite system with the ever-increasing photocatalytic efficiency and enhanced stability in degradation reaction process.

Notes

Acknowledgements

The authors acknowledge the support of the DST-SERB project New Delhi (Ref No: SERB/F/4592/2013-14 dated 17.10.2013).We gratefully acknowledge to the College Managing Board, The Principal and Head of the Department (Chemistry), VHNSN College for providing necessary research facilities.

References

  1. 1.
    S.M. Cuevas, I. Oller, A. Agüera, M. Llorca, J.A. Sánchez Pérez, S. Malato, Combination of nanofiltration and ozonation for the remediation of real municipal wastewater effluents: acute and chronic toxicity assessment. J. Hazard. Mater. 323, 442–451 (2017)CrossRefGoogle Scholar
  2. 2.
    M.C. Ortega-Liebana, E. Sanchez-Lopez, J. Hidalgo-Carrillo, A. Marinas, J.M. Marinas, F.J. Urbano, A comparative study of photocatalytic degradation of 3-chloropyridine under UV and solar light by homogeneous (photo-Fenton) and heterogeneous (TiO2) photocatalysis. Appl. Catal. B 127, 316–322 (2012)CrossRefGoogle Scholar
  3. 3.
    C.C. Wang, J.R. Li, X.L. Lv, Y.Q. Zhang, G.S. Guo, Photocatalytic organic pollutants degradation in metal–organic frameworks. Energy Environ. Sci. 7, 2831–2867 (2014)CrossRefGoogle Scholar
  4. 4.
    C. Duran, D. Ozdes, A. Gundogdu, H.B. Senturk, Kinetic and isotherm analysis of basic dyes adsorption onto almond shell as a low cost adsorbent. J. Chem. Eng. Data 56, 2136–2147 (2011)CrossRefGoogle Scholar
  5. 5.
    A. Szygula, E. Guibal, M. Ruiz, A.M. Sastre, The removal of sulphonated azo-dyes by coagulation with chitosan. Colloids Surf. A 330, 219–226 (2008)CrossRefGoogle Scholar
  6. 6.
    M.M. Dávila-Jiménez, M.P. Elizalde-González, A.A. Pelaéz-Cid, Adsorption interaction between natural adsorbents and textile dyes in aqueous solution. Colloids Surf. A 254, 107–114 (2005)CrossRefGoogle Scholar
  7. 7.
    J. Wu, C. Liu, K.H. Chu, S. Suen, Removal of cationic dye methyl violet 2B from water by cation exchange membranes. J. Membr. Sci. 309, 239–245 (2008)CrossRefGoogle Scholar
  8. 8.
    E. Franciscon, A. Zille, F. Dias Guimaro, C. Ragagnin de Menezes, L.R. Durrant, A. Cavaco-Paulo, Biodegradation of textile azo dyes by a facultative Staphylococcus arlettae strain VN-11 using a sequential microaerophilic/aerobic process. Int. Biodeterior. Biodegradation 63, 280–288 (2009)CrossRefGoogle Scholar
  9. 9.
    H. Yang, H. Cheng, Controlling nitrite level in drinking water by chlorination and chloramination. Sep. Purif. Technol. 56, 392–396 (2007)CrossRefGoogle Scholar
  10. 10.
    A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995)CrossRefGoogle Scholar
  11. 11.
    H. Qin, W. Li, Y. Xia, T. He, Photocatalytic activity of heterostructures based on ZnO and N-doped ZnO. ACS Appl. Mater. Interfaces 3, 3152–3156 (2011)CrossRefGoogle Scholar
  12. 12.
    R. Abe, H. Takami, N. Murakami, B. Ohtani, Pristine simple oxides as visible light driven photocatalysts: highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. J. Am. Chem. Soc. 130, 7780–7781 (2008)CrossRefGoogle Scholar
  13. 13.
    H. Zhao, G. Zhang, Q. Zhang, MnO2/CeO2 for catalytic ultrasonic degradation of methyl orange. Ultrason. Sonochem. 21, 991–996 (2014)CrossRefGoogle Scholar
  14. 14.
    J.H. Pan, Q. Huang, Z.Y. Koh, D. Neo, X.Z. Wang, Q. Wang, Scalable synthesis of urchin and flower-like hierarchical NiO microspheres and their electrochemical property for lithium storage. ACS Appl. Mater. Interfaces 5(13), 6292–6299 (2013)CrossRefGoogle Scholar
  15. 15.
    X. Bai, R. Zong, C. Li, D. Liu, Y. Liu, Y. Zhu, Enhancement of visible photocatalytic activity via Ag@C3N4 core–shell plasmonic composite. Appl. Catal. B 147, 82–91 (2014)CrossRefGoogle Scholar
  16. 16.
    S. Sun, W. Wang, L. Zhang, M. Shang, L. Wang, Ag@C core/shell nanocomposite as a highly efficient plasmonic photocatalyst. Catal. Commun. 11, 290–293 (2009)CrossRefGoogle Scholar
  17. 17.
    M.J. Kale, T. Avanesian, P. Christopher, Direct photocatalysis by plasmonic nanostructures. ACS Catal. 4, 116–128 (2014)CrossRefGoogle Scholar
  18. 18.
    P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Wei, M.H. Whangbo, Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angew. Chem. Int. Ed. (England) 47, 7931–7933 (2008)CrossRefGoogle Scholar
  19. 19.
    K. Saravanakumar, V. Muthuraj, S. Vadivel, Constructing novel Ag nanoparticles anchored on MnO2 nanowires as an efficient visible light driven photocatalyst. RSC Adv. 6, 61357–61366 (2016)CrossRefGoogle Scholar
  20. 20.
    K. Saravanakumar, V. Muthuraj, Fabrication of sphere like plasmonic Ag/SnO2 photocatalyst for the degradation of phenol. Optik 131, 754–763 (2017)CrossRefGoogle Scholar
  21. 21.
    Y. Ashok Kumar Reddy, A. Sivasankar Reddy, P. Sreedhara Reddy, Effect of oxygen partial pressure on the properties of NiO–Ag composite films grown by DC reactive magnetron sputtering. J. Alloys Compd. 583, 396–403 (2014)CrossRefGoogle Scholar
  22. 22.
    S. Yang, H.K. Park, J.S. Kim, S.H. Phark, Y.J. Chang, T.W. Noh, H.N. Hwang, C.C. Hwang, H.D. Kim, Reduction of charge fluctuation energies in ultrathin NiO films on Ag(001). Surf. Sci. 616, 12–18 (2013)CrossRefGoogle Scholar
  23. 23.
    B. Wu, M. Sheng, S. Gao, Y. Wang, F. Liao, Single-source precursor to Ag/NiO composite for rechargeable charge storage. J. Alloys Compd. 692, 34–39 (2017)CrossRefGoogle Scholar
  24. 24.
    J. Song, L. Xu, R. Xing, W. Qin, Q. Dai, H. Song, Ag nanoparticles coated NiO nanowires hierarchical nanocomposites electrode for nonenzymatic glucose biosensing. Sens. Actuators B 182, 675–681 (2013)CrossRefGoogle Scholar
  25. 25.
    Y. Ding, Y. Wang, L. Su, H. Zhang, Y. Lei, Preparation and characterization of NiO–Ag nanofibers, NiO nanofibers, and porous Ag: towards the development of a highly sensitive and selective non-enzymatic glucose sensor. J. Mater. Chem. 20, 9918–9926 (2010)CrossRefGoogle Scholar
  26. 26.
    S. Adhikari, N.K. Eswar, S. Sangita, D. Sarkar, G. Madras, Investigation of nano Ag-decorated SiC particles for photoelectrocatalytic dye degradation and bacterial inactivation. J. Photochem. Photobiol. A 357, 118–131 (2018)CrossRefGoogle Scholar
  27. 27.
    Y.Z. Zhen, J. Wang, J. Li, M. Fu, F. Fu, Y.Z. Zhang, J.H. Feng, Enhanced photocatalytic degradation for thiophene by Ag/α-MoO3 heterojunction under visible-light irradiation, J. Mater. Sci.: Mater. Electron. 29, 3672 (2018)Google Scholar
  28. 28.
    U. Holzwarth, N. Gibson, The Scherrer equation versus the ‘Debye-Scherrer equation. Nat. Nanotechnol. 6, 534 (2011)CrossRefGoogle Scholar
  29. 29.
    S.A. Ansari, M.M. Khan, M.O. Ansari, J. Lee, M.H. Cho, Visible light-driven photocatalytic and photoelectrochemical studies of Ag–SnO2 nanocomposites synthesized using an electrochemically active biofilm. RSC Adv. 4, 26013–26021 (2014)CrossRefGoogle Scholar
  30. 30.
    C. Chen, Y. Zheng, Y. Zhan, X. Lin, Q. Zheng, K. Wei, Enhanced Raman scattering and photocatalytic activity of Ag/ZnO heterojunction nanocrystals. Dalton Trans. 40, 9566–9570 (2011)CrossRefGoogle Scholar
  31. 31.
    B. Zhao, X.K. Ke, J.H. Bao, C.L. Wang, L. Dong, Y.W. Chen, H.L. Chen, Synthesis of flower-like NiO and effects of morphology on its catalytic properties. J. Phys. Chem. C 113, 14440–14447 (2009)CrossRefGoogle Scholar
  32. 32.
    J.R. Manders, S.W. Tsang, M.J. Hartel, T.H. Lai, S. Chen, C.M. Amb, J.R. Reynolds, Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells. Adv. Funct. Mater. 23, 2993–3001 (2013)CrossRefGoogle Scholar
  33. 33.
    J.C. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, Systematic, XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2, 1319–1324 (2000)CrossRefGoogle Scholar
  34. 34.
    S.I. Kim, J.S. Lee, H.J. Ahn, H.K. Song, J.H. Jang, Facile route to an efficient NiO supercapacitor with a three dimensional nanonetwork morphology. ACS Appl. Mater. Interfaces 5(5), 1596–1603 (2013)CrossRefGoogle Scholar
  35. 35.
    K. Vignesh, R. Hariharan, M. Rajarajan, A. Suganthi, Photocatalytic performance of Ag doped SnO2 nanoparticles modified with curcumin. Solid State Sci. 21, 91–99 (2013)CrossRefGoogle Scholar
  36. 36.
    J.G. Yu, Q.J. Xiang, J.R. Ran, S. Mann, One-step hydrothermal fabrication and photocatalytic activity of surface-fluorinated TiO2 hollow microspheres and tabular anatase single micro-crystals with high-energy facets. Cryst EngComm 12, 872–879 (2010)CrossRefGoogle Scholar
  37. 37.
    J.D. Xiao, Y.B. Xie, H.B. Cao, Y.Q. Wang, Z.J. Zhao, g-C3N4-triggered super synergy between photocatalysis and ozonation attributed to promoted ·OH generation. Chem. Commun. 66, 10–14 (2015)Google Scholar
  38. 38.
    K. Saravanakumar, R. Karthik, S.-M. Chen, J. Vinoth Kumar, K. Prakash, V. Muthuraj, Construction of novel Pd/CeO2/g-C3N4 nanocomposites as efficient visible-light photocatalysts for hexavalent chromium detoxification. J. Colloid Interface Sci. 504, 514–526 (2017)CrossRefGoogle Scholar
  39. 39.
    S. Manna, A.K. Deb, J. Jagannath, S.K. De, Synthesis and room temperature ferromagnetism in Fe doped NiO nanorods. J. Phys. Chem. C 112, 10659–10662 (2008)CrossRefGoogle Scholar
  40. 40.
    B. Karthikeyan, T. Pandiyarajan, S. Hariharana, M.S. Ollakkan, Wet chemical synthesis of diameter tuned NiO microrods: microstructural, optical and optical power limiting applications. CrystEngComm 18, 601–607 (2016)CrossRefGoogle Scholar
  41. 41.
    H. He, S. Yang, K. Yu, Y. Ju, C. Sun, L. Wang, Microwave induced catalytic degradation of crystal violet in nano-nickel dioxide suspensions. J. Hazard. Mater. 173, 393 (2010)CrossRefGoogle Scholar
  42. 42.
    P. Zhang, T. Wang, X.X. Chang, J.L. Gong, Effective Charge carrier utilization in photocatalytic conversions. Acc. Chem. Res. 49, 911–921 (2016)CrossRefGoogle Scholar
  43. 43.
    K. Saravanakumar, M. Mymoon Ramjan, P. Suresh, V. Muthuraj, Fabrication of highly efficient visible light driven Ag/CeO2 photocatalyst for degradation of organic pollutants. J. Alloys Compd. 664, 149–160 (2016)CrossRefGoogle Scholar
  44. 44.
    K. Fujihara, S. Izumi, T. Ohno, M. Matsumura, Time-resolved photoluminescence of particulate TiO2 photocatalysts suspended in aqueous solutions. J. Photochem. Photobiol. A 132, 99–104 (2000)CrossRefGoogle Scholar
  45. 45.
    S.A. Ansari, M.M. Khan, M. Omaish, J. Lee, M.H. Cho, Visible light-driven photocatalytic and photoelectrochemical studies of Ag–SnO2 nanocomposites synthesized using an electrochemically active biofilm. RSC Adv. 4, 26013–26021 (2014)CrossRefGoogle Scholar
  46. 46.
    X.Z. Li, Y.Q. Wang, Structure and photoluminescence properties of Ag-coated ZnO nano-needles. J. Alloys Compd. 509, 5765–5768 (2011)CrossRefGoogle Scholar
  47. 47.
    K. Saravanakumar, P. Senthil Kumar, J. Vinoth Kumar, S. Karuthapandian, R. Philip, V. Muthuraj, Controlled synthesis of plate like structured MoO3 and visible light induced degradation of rhodamine B dye solution, Energy Environ. Focus 5, 50–57 (2016)CrossRefGoogle Scholar
  48. 48.
    K. Saravanakumar, V. Muthuraj, M. Jeyaraj, The design of novel visible light driven Ag/CdO as smart nanocomposite for photodegradation of different dye contaminants. Spectrochim. Acta Mol. Biomol. Spectrosc. 188, 291–300 (2018)CrossRefGoogle Scholar
  49. 49.
    S. Lakshmi Prabavathi, P. Senthil Kumar, K. Saravanakumar, V. Muthuraj, S. Karuthapandian, A novel sulphur decorated 1-D MoO3 nanorods: facile synthesis and high performance for photocatalytic reduction of hexavalent chromium. J. Photochem. Photobiol. A 356, 642–651 (2018)CrossRefGoogle Scholar
  50. 50.
    M. Dhanalakshmi, K. Saravanakumar, S. Lakshmi Prabavathi, M. Abinaya, V. Muthuraj, Fabrication of novel surface plasmon resonance induced visible light driven iridium decorated SnO2 nanorods for degradation of organic contaminants. J. Alloys Compd. 763, 512–524 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Saravanakumar Karunamoorthy
    • 1
  • Muthuraj Velluchamy
    • 1
  1. 1.Department of ChemistryV.H.N.S.N College (Autonomous)VirudhunagarIndia

Personalised recommendations