Advertisement

Bulk heterojunction solar cells based on polyaniline/multi wall carbon nanotube: from morphology control to cell efficiency

  • Reza Charekhah
  • Zeinab Jarrahi
  • Mahsa Darabi
  • Amin Imani
  • Gholamali Farzi
Article
  • 8 Downloads

Abstract

In this study, polyaniline/multiwall carbon nanotube nanocomposite (PANI/MWCNT) was first synthesized, and a simple organic solar cell was then fabricated containing PANI/MWCNT with cauliflower morphology as an active layer. In the next step; the influence of different parameters such as MWCNT content, the cathode buffer layer, the electrolyte and the presence of dye on the efficiency were experimentally investigated. The effect of carbon nanotubes weight percent on efficiency was studied by measuring the band gap using the UV–Vis characterization. In order to detect the chemical bonding between MWCNT and PANI, the Fourier transform-infrared spectroscopy was used. Also in order to investigate morphology, field emission scanning electron microscopy images of the composite were obtained, and conductivity properties were measured using a standard 4-point DC/voltage method at room temperature. The results showed that by increasing the amount of MWCNT in the composite, the band gap decreased and thus the cell efficiency increased. In a multi-layer cell with cauliflower morphology, due to the excellent synergy between the active layer of PANI/MWCNT and the dye cell components, a significant increase in photovoltaic profile was observed in comparison with simple cells with cauliflower morphology.

Supplementary material

10854_2018_169_MOESM1_ESM.docx (263 kb)
Supplementary material 1 (DOCX 262 KB)

References

  1. 1.
    S. Sharma, K.K. Jain, A. Sharma, Mater. Sci. Appl. 6, 1145–1155 (2015)Google Scholar
  2. 2.
    A.M. Bagher, M.M.A. Vahid, M. Mohsen, Am. J. Opt. and Photonics 3(5), 94–113 (2015)CrossRefGoogle Scholar
  3. 3.
    N.D. Treat, M.A. Brady, G. Smith, M.F. Toney, E.J. Kramer, C.J. Hawker, M.L. Chabinyc, Adv. Energy Mater. 1, 82–89 (2011)CrossRefGoogle Scholar
  4. 4.
    S. Palaniappan, A. John, Prog. Polym. Sci. 33, 732–58 (2008)CrossRefGoogle Scholar
  5. 5.
    T.A. Skotheim, R.L. Elsenbaumer, J.R. Reynolds, Handbook of conducting polymers, (Wiley, New York, 1997)Google Scholar
  6. 6.
    G. Premamoy, K.S. Samir, C. Amit, Eur. Polym. J. 35, 699 (1999)CrossRefGoogle Scholar
  7. 7.
    C. Oueiny, S. Berlioz, F.X. Perrin, Prog. Polym. Sci. 39, 707–748 (2014)CrossRefGoogle Scholar
  8. 8.
    H. Niua, Sh Qin, X. Mao, Sh Zhang, R. Wang, L. Wan, J.X. Miao, Electrochim. Acta 121, 285–293 (2014)CrossRefGoogle Scholar
  9. 9.
    G. Li, R. Zhu, Y. Yang, Nat. Photonics 6, 153–161 (2012)CrossRefGoogle Scholar
  10. 10.
    T. Hu, L. Li, Sh Xiao, K. Yuan, H. Yang, L. Chen, Y. Chen, Org. Electron. 38, 350–356 (2016)CrossRefGoogle Scholar
  11. 11.
    J. Zhao, J. Ma, X. Nan, B. Tang, Org. Electron. 30, 52–59 (2016)CrossRefGoogle Scholar
  12. 12.
    H. Li, Y. Xiao, G. Han, Y. Zhang, Org. Electron. 50, 161–169 (2017)CrossRefGoogle Scholar
  13. 13.
    D. Yun, Y.J. Jeong, H. Ra, J.M. Kim, T.K. An, S.W. Rhee, J. Jang, Org. Electron. 52, 7–16 (2018)CrossRefGoogle Scholar
  14. 14.
    J. Yan, T. Ni, F. Zou, L. Zhang, D. Yang, Diam. Relat. Mater. 41, 79–83 (2014)CrossRefGoogle Scholar
  15. 15.
    S.P. Somani, P.R. Somani, M. Umeno, E. Flahaut, Appl. Phys. Lett. 89, 223505 (2006)CrossRefGoogle Scholar
  16. 16.
    A. Arena, N. Daonato, G. Saitta, Microelectron. J. 39, 1659–1662 (2008)CrossRefGoogle Scholar
  17. 17.
    M.C. Wu, Y.Y. Lin, S. Chen, H.C. Liao, Y.J. Wu, C.W. Chen, Y.F. Chen, W.F. Su, Chem. Phys. Lett. 468, 64–68 (2009)CrossRefGoogle Scholar
  18. 18.
    A. Imani, Gh Farzi, J. Mater. Sci. Mater. Electron. 28, 10684–10692 (2017)CrossRefGoogle Scholar
  19. 19.
    D.J. Guo, H.L. Li, Solid State Electrochem. 9, 445–449 (2005)CrossRefGoogle Scholar
  20. 20.
    D. Vak, S.S. Kim, J. Jo, S.H. Oh, S.I. Na, J. Kim, D.Y. Kim, Appl. Phys. Lett. (2007).  https://doi.org/10.1063/1.2800290 CrossRefGoogle Scholar
  21. 21.
    S.P. Somani, P.R. Somani, M. Umeno, Diam. Relat. Mater. 17, 585–588 (2008)CrossRefGoogle Scholar
  22. 22.
    L. Jin, C. Bower, O. Zhou, Appl. Phys. Lett. 73, 1197 (1998)CrossRefGoogle Scholar
  23. 23.
    Z. Jin, K.P. Pramoda, G. Xu, S.H. Goh, Chem. Phys. Lett. 337, 43–47 (2001)CrossRefGoogle Scholar
  24. 24.
    Z.J. Jia, Z.Y. Wang, C.L. Xu, J. Liang, B.Q. Wei, D.H. Wu, S.W. Zhu, Mater. Sci. Eng. A 271, 395 (1999)CrossRefGoogle Scholar
  25. 25.
    G.Z. Chen, M.S.P. Shaffer, D. Coleby, G. Dixon, W.Z. Zhou, D.J. Fray, A.H. Windle, Adv. Mater. 12, 522 (2000)CrossRefGoogle Scholar
  26. 26.
    H.C. Liao, C.C. Ho, C.Y. Chang, M.H. Jao, S.B. Darling, W.F. Su, Mater. Today 16, 326–336 (2013)CrossRefGoogle Scholar
  27. 27.
    X. Yang, J. Loos, S.C. Veenstra, W.J.H. Verhees, M.M. Wienk, J.M. Kroon, M.A.J. Michels, R.A.J. Janssen, Nano Lett. 5(4), 579–583 (2005)CrossRefGoogle Scholar
  28. 28.
    K. Gao, J. Miao, L. Xiao, W. Deng, Y. Kan, T. Liang, C. Wang, F. Huang, J. Peng, Y. Cao, F. Liu, T.P. Russell, H. Wu, X. Peng, Adv. Mater. 28(23), 4727–4733 (2016)CrossRefGoogle Scholar
  29. 29.
    K. Gao, L. Xiao, Y. Kan, B. Yang, J. Peng, Y. Cao, F. Liu, T.P. Russell, X. Peng, J. Mater. Chem. C 4, 3843–3850 (2016)CrossRefGoogle Scholar
  30. 30.
    H. Zengin, W. Zhou, J. Jin, R. Czerw, D.W. Smith, L. Echegoyen, D.L. Carroll, S.H. Foulger, J. Ballato, Adv. Mater. 14(20), 1480–1483 (2002)CrossRefGoogle Scholar
  31. 31.
    S. Sinha, S. Bhadra, D. Khastgir, J. Appl. Polym. Sci. 112, 3135–3140 (2009)CrossRefGoogle Scholar
  32. 32.
    A. Mekki, S. Samanta, A. Singh, Z. Salmi, R. Mahmoud, M.M. Chehimi, D.K. Aswal, J. Colloid Interface Sci. 418, 185–192 (2014)CrossRefGoogle Scholar
  33. 33.
    Y. Liao, C. Zhang, Y. Zhang, V. Strong, J. Tang, X.G. Li, K. Kalantarzadeh, E.M.V. Hoek, K.L. Wang, R.B. Kaner, Nano Lett. 11, 954–959 (2011)CrossRefGoogle Scholar
  34. 34.
    S.K. Das, R. Prakash, Emerging Trends in Electronic and Photonic Devices & Systems (IEEE, Piscataway, 2009), pp. 525–527Google Scholar
  35. 35.
    F. Yilmaz, Z. Küçükyavuz, J. Appl. Polym. Sci. 111, 680–684 (2009)Google Scholar
  36. 36.
    G. Otrokhov, D. Pankratov, G. Shumakovich, M. Khlupova, Y. Zeifman, I. Vasil’eva, O. Morozova, A. Yaropolov, Electrochim. Acta 123, 151–157 (2014)CrossRefGoogle Scholar
  37. 37.
    Z. Zhang, Z. Wei, M. Wan, Macromolecules 35, 5937–5942 (2002)CrossRefGoogle Scholar
  38. 38.
    T.K. Srinivasan, B. Venkatraman, M. Kamarudin, D. Ponraju, A.K. Arora, in International Conference on Nanoscience, Engineering and Technology (ICONSET) (2011), pp. 528–531Google Scholar
  39. 39.
    T. Jeevananda, S. Palaniappan, J. Appl. Polym. Sci. 74, 3507–3512 (1999)CrossRefGoogle Scholar
  40. 40.
    S. Quillard, G. Louarn, S. Lefrant, A.G. Macdiarmid, Phys. Rev. B 50, 12496–12508 (1994)CrossRefGoogle Scholar
  41. 41.
    H. Zhou, X. Wang, K. Yu, C. Zhang, H. Li, Z. Du, Integr. Ferroelectr. 154, 159–165 (2014)CrossRefGoogle Scholar
  42. 42.
    A. Imani, G. Farzi, A. Ltaief, Int. Nano Lett. 3, 8 (2013)CrossRefGoogle Scholar
  43. 43.
    T. Jeevananda, N.H. Siddaramaiah, S.-B. Kim, J.H. Heo, Lee, Polym. Adv. Technol. 19, 1754–1762 (2008)CrossRefGoogle Scholar
  44. 44.
    W. Wu, Y. Li, L. Yang, Y. Ma, X. Yan, Synth. Met. 193, 48–57 (2014)CrossRefGoogle Scholar
  45. 45.
    X.L. Wei, Y.Z. Wang, S.M. Long, C. Bobeczko, A.J. Epstein, J. Am. Chem. 118, 2545–2555 (1996)CrossRefGoogle Scholar
  46. 46.
    K. Gurunathan, D.P. Amalnerkar, D.C. Trivedi, Mater. Lett. 57, 1642–1648 (2003)CrossRefGoogle Scholar
  47. 47.
    Y. Coskun, A. Cirpan, L. Toppare, Polymer 45, 4989–4995 (2004)CrossRefGoogle Scholar
  48. 48.
    A.S. Hassanien, K.A. Aly, A.A. Akl, J. Alloys Compd. 685, 733–742 (2016)CrossRefGoogle Scholar
  49. 49.
    B.G. Kim, X. Ma, C. Chen, Y. Ie, E.W. Coir, H. Hashemi, Y. Aso, P.F. Green, J. Kieffer, J. Kim, Adv. Funct. Mater. 23, 439–445 (2013)CrossRefGoogle Scholar
  50. 50.
    X. Guo, N. Zhou, S.J. Lou, J. Smith, D.B. Tice, J.W. Hennek, R.P. Ortiz, J.T.L. Navarrete, S. Li, J. Strzalka, Nat. Photonics 7, 825–833 (2013)CrossRefGoogle Scholar
  51. 51.
    S. Chen, C.E. Small, C.M. Amb, J. Subbiah, T.H. Lai, S.W. Tsang, J.R. Mandres, J.R. Reynolds, F. So, Adv. Energy Mater. 2, 1333–1337 (2012)CrossRefGoogle Scholar
  52. 52.
    Z. Yuan, J. Yu, N. Wang, Y. Jiang, J. Mater. Sci. Mater. Electron. 22, 1730–1735 (2011)CrossRefGoogle Scholar
  53. 53.
    Y. Xiao, J. Lin, J. Wu, S. Tai, G. Yue, T. Lin, J. Power Source 233, 320–325 (2013)CrossRefGoogle Scholar
  54. 54.
    H. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Nat. Photonics 3(11), 649–653 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Reza Charekhah
    • 1
  • Zeinab Jarrahi
    • 1
  • Mahsa Darabi
    • 1
  • Amin Imani
    • 1
    • 2
  • Gholamali Farzi
    • 1
  1. 1.Department of Materials and Polymer Engineering, Faculty of EngineeringHakim Sabzevari UniversitySabzevarIran
  2. 2.Department of Materials EngineeringThe University of British ColumbiaVancouverCanada

Personalised recommendations