Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 23, pp 20339–20346 | Cite as

Crystal structure and microwave dielectric properties of low-permittivity Sr2MgSi2O7 ceramic

  • Mi Xiao
  • Yanshuang Wei
  • Hongrui Sun
  • Jie Lou
  • Ping Zhang
Article
  • 93 Downloads

Abstract

Low-permittivity Sr2MgSi2O7 ceramics with tetragonal crystal structure were prepared through the conventional solid-state method. X-ray diffraction patterns and scanning electron microscopy were used to analyze the phase and micromorphology of the specimens sintered at temperature from 1260 to 1320 °C. The bond ionicity, lattice energy and bond energy of Sr2MgSi2O7 ceramics were calculated to investigate the relationships between microwave dielectric properties and microstructures. Optimum microwave dielectric properties were obtained when the sample was sintered at 1280 °C for 4h: εr = 6.85, Q × f0 = 22,530 GHz (f = 9.20 GHz), τf = − 32 ppm/°C.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61671323).

References

  1. 1.
    A. Sobhani-Nasab, A. Ziarati, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, Res. Chem. Intermed. 43, 6155–6165 (2017)CrossRefGoogle Scholar
  2. 2.
    A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, M. Salavati-Niasari, H. Taqriri, S. Bagheri, K. Saberyan, J. Mater. Sci.: Mater. Electron. 26, 5735–5742 (2015)Google Scholar
  3. 3.
    M.M. Krzmanc, M. Valant, D. Suvorov, J. Eur. Ceram. Soc. 27, 1181–1185 (2007)CrossRefGoogle Scholar
  4. 4.
    P. Zhang, J. Liao, Y. Zhao, H. Xie, L. Liu, M. Xiao, J. Mater. Sci.: Mater. Electron. 28, 4946–4950 (2017)Google Scholar
  5. 5.
    M.M. Krzmanc, A. Meden, D. Suvorov, J. Eur. Ceram. Soc. 27, 2957–2961 (2007)CrossRefGoogle Scholar
  6. 6.
    H. Ohsato, T. Tsunooka, T. Sugiyama, K.I. Kakimoto, H. Ogawa, J. Electroceram. 17, 445–450 (2006)CrossRefGoogle Scholar
  7. 7.
    S. Thomas, M.T. Sebastian, J. Am. Ceram. Soc. 92, 2975–2981 (2009)CrossRefGoogle Scholar
  8. 8.
    M. Andou, T. Tsunooka, Y. Higashida, H. Sugiura, H. Ohsato, Development of High Q Forsterite Ceramics for High-Frequency Applications, in MMA 2002 Conference, York, 2002Google Scholar
  9. 9.
    Y. Guo, H. Ohsato, K.I. Kakimoto, J. Eur. Cearm. Soc. 26, 1827–1830 (2006)CrossRefGoogle Scholar
  10. 10.
    N.H. Nguyen, J.B. Lim, S. Nahm, J.H. Paik, J.H. Kim, J. Am. Ceram. Soc. 90, 3127–3130 (2007)CrossRefGoogle Scholar
  11. 11.
    H. Wang, Q. Zhang, H. Yang, H. Sun, Ceram. Int. 34, 1405–1408 (2008)CrossRefGoogle Scholar
  12. 12.
    R.P. Sreekanth Chakradhar, B.M. Nagabhushana, G.T. Chandrappa, K.P. Ramesh, J.L. Rao, Mater. Chem. Phys. 95, 169–175 (2006)CrossRefGoogle Scholar
  13. 13.
    J.W. Kaiser, W. Jeitschko, Z. Krist-New Cryst. Struct. 217, 25–26 (2002)Google Scholar
  14. 14.
    M. Kimata, Naturwissenschaften 69, 40–41 (1982)CrossRefGoogle Scholar
  15. 15.
    T. Joseph, M.T. Sebastian, J. Am. Ceram. Soc. 93, 147–154 (2010)CrossRefGoogle Scholar
  16. 16.
    I.P. Sahu, D.P. Bisen, N. Brahme, R. Sharma, Res. Chem. Intermed. 41, 1–16 (2014)Google Scholar
  17. 17.
    W.S. Xia, F.Y. Yang, G.Y. Zhang, K. Han, D.C. Guo, J. Alloys Compd. 656, 470–475 (2016)CrossRefGoogle Scholar
  18. 18.
    M. Xiao, J. Lou, Z. Zhou, Ceram. Int. 43(17), 15567–15572 (2017)CrossRefGoogle Scholar
  19. 19.
    M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, M. Hamadanian, S. Bagheri, J. Mater. Sci.: Mater. Electron. 28, 14965–14973 (2017)Google Scholar
  20. 20.
    J.C. Phillips, Phys. Rev. Lett. 20, 550–553 (1968)CrossRefGoogle Scholar
  21. 21.
    J.C. Phillips, J.A.V. Vechten, Phys. Rev. Lett. 22, 705–708 (1969)CrossRefGoogle Scholar
  22. 22.
    B.F. Levine, J. Chem. Phys. 59, 1463–1486 (1973)CrossRefGoogle Scholar
  23. 23.
    Z.J. Wu, Phys. Rev. B 58, 958–962 (1998)CrossRefGoogle Scholar
  24. 24.
    E.S. Kim, K.H. Yoon, J. Eur. Cearm. Soc. 23, 2397–2401 (2003)CrossRefGoogle Scholar
  25. 25.
    P. Zhang, Y. Zhao, X. Wang, Dalton Trans. 44, 10932–10938 (2015)CrossRefGoogle Scholar
  26. 26.
    S.S. Batsanov, Russ. Chem. Rev. 51, 684–697 (1982)CrossRefGoogle Scholar
  27. 27.
    M. Xiao, Q. Gu, Z. Zhou, P. Zhang, J. Am. Ceram. Soc. 100, 3952–3960 (2017)CrossRefGoogle Scholar
  28. 28.
    Z.B. Feng, C.F. Xing, J.X. Bi, X.S. Jiang, H.T. Wu, J. Alloys Compd. 686, 923–929 (2016)CrossRefGoogle Scholar
  29. 29.
    I. Reaney, E. Colla, N. Setter, Jpn. J. Appl. Phys. 33, 3984–3990 (1994)CrossRefGoogle Scholar
  30. 30.
    R.T. Sanderson, J. Am. Chem. Soc. 105, 2259–2261 (1983)CrossRefGoogle Scholar
  31. 31.
    Y.R. Luo, Comprehensive Handbook of Chemical Bond Energies. (CRC Press, Boca Raton, 2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electrical and Information Engineering & Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of EducationTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations