Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 23, pp 20329–20338 | Cite as

An approach for photodegradation mechanism at TiO2/SrTiO3 interface

  • Ubirajara ColetoJr.
  • Rafael A. C. AmoresiEmail author
  • Vinícius Teodoro
  • Isabela M. Iani
  • Elson Longo
  • Maria A. Zaghete
  • Leinig A. Perazolli


TiO2/SrTiO3 heterojunction powders were obtained and characterized, and their photocatalytic potential was evaluated. The formation of the solid–solid interface was evidenced by secondary-phase formation in the interface region, which was observed using transmission electron microscopy. The photocatalytic efficiency of the TiO2/SrTiO3 heterojunction was higher than that of pure TiO2 and SrTiO3 samples. The photocatalytic behavior was investigated via scavenger experiments, which indicated that the mechanism of charge transfer for the heterojunction was the direct transfer of the electrons at the interface. A surface compositional analysis of the materials revealed that effective electronic-transfer properties of the materials are more important than the content of pre-adsorbed species on the surface for redox reactions. Photoluminescence spectroscopy analyses showed a reduction in the photoluminescent intensity for the heterojunction and emission in distinct regions depending on the defects formed in the heterojunction. These differences in behavior may be related to the different photocatalytic responses observed for pure compounds and heterojunctions; a broad analysis indicates that the mono (\(V_{O}^{ \cdot }\)) and double (\(V_{O}^{{ \cdot \cdot }}\)) ionized vacancies affect the performance of the photocatalyst in the degradation of micropollutants.



This work was supported by the São Paulo Research Foundation (Grant CEPID/CDMF-FAPESP, process no. 2013/07296-2, and 2017/19143-7) and the National Council for Scientific and Technological Development (CNPq). We are also grateful to the LMA-IQ for providing the FEG-SEM facilities.


  1. 1.
    S. Bai, W. Guo, J. Sun, J. Li, Y. Tian, A. Chen, R. Luo, D. Li, Sens. Actuators B. Chem. 226, 96–103 (2016)CrossRefGoogle Scholar
  2. 2.
    P.P. Ortega, L.S.R. Rocha, C.C. Silva, M. Cilense, R.A.C. Amoresi, E. Longo, A.Z. Simões, Ceram. Int. 42, 16521–16528 (2016)CrossRefGoogle Scholar
  3. 3.
    A. Ohtomo, H.Y. Hwang, Nature. 427, 423–426 (2004)CrossRefGoogle Scholar
  4. 4.
    D.E. Motaung, G.H. Mhlongo, P.R. Makgwane, B.P. Dhonge, F.R. Cummings, H.C. Swart, S.S. Ray, Sens. Actuators B. Chem. 254, 984–995 (2018)CrossRefGoogle Scholar
  5. 5.
    C.B.D. Marien, T. Cottineau, D. Robert, P. Drogui, Appl. Catal. B Environ. 194, 1–6 (2016)CrossRefGoogle Scholar
  6. 6.
    A. Fujishima, X. Zhang, D.A. Tryk, Surf. Sci. Rep. 63, 515–582 (2008)CrossRefGoogle Scholar
  7. 7.
    K. Hashimoto, H. Irie, A. Fujishima, Jpn. J. Appl. Phys. 44, 8269–8285 (2005)CrossRefGoogle Scholar
  8. 8.
    K. Nakata, A. Fujishima, J. Photochem. Photobiol. C Photochem. Rev. 13, 169–189 (2012)CrossRefGoogle Scholar
  9. 9.
    J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 114, 9919–9986 (2014)CrossRefGoogle Scholar
  10. 10.
    S. Zeng, P. Kar, U.K. Thakur, K. Shankar, Nanotechnology. 29, 52001 (2018)CrossRefGoogle Scholar
  11. 11.
    W. Zhao, N. Liu, H. Wang, L. Mao, Ceram. Int. 43, 4807–4813 (2017)CrossRefGoogle Scholar
  12. 12.
    R.A.C. Amoresi, V. Teodoro, G.F. Teixeira, M.S. Li, A.Z. Simões, L.A. Perazolli, E. Longo, M.A. Zaghete, J. Eur. Ceram. Soc. 38, 1621–1631 (2018)CrossRefGoogle Scholar
  13. 13.
    H.-C. Chen, C.-W. Huang, J.C.S. Wu, S.-T. Lin, J. Phys. Chem. C 116, 7897–7903 (2012)CrossRefGoogle Scholar
  14. 14.
    K. Van Benthem, C. Elsässer, R.H. French, J. Appl. Phys. 90, 6156–6164 (2001)CrossRefGoogle Scholar
  15. 15.
    E. Drożdż, A. Koleżyński, RSC Adv. 7, 28898–28908 (2017)CrossRefGoogle Scholar
  16. 16.
    C. Luo, J. Zhao, Y. Li, W. Zhao, Y. Zeng, C. Wang, Appl. Surf. Sci. 447, 627–635 (2018)CrossRefGoogle Scholar
  17. 17.
    H. Kato, A. Kudo, J. Phys. Chem. B. 106, 5029–5034 (2002)CrossRefGoogle Scholar
  18. 18.
    J. Ng, S. Xu, X. Zhang, H.Y. Yang, D.D. Sun, Adv. Funct. Mater. 20, 4287–4294 (2010)CrossRefGoogle Scholar
  19. 19.
    A. Fujischima, X. Zhang, D.A. Tryk, Surf. Sci. Rep. 63, 515–582 (2008)CrossRefGoogle Scholar
  20. 20.
    J. Zhang, J.H. Bang, C. Tang, P.V. Kamat, ACS Nano 4, 387–395 (2010)CrossRefGoogle Scholar
  21. 21.
    L. Wang, Z. Wang, D. Wang, X. Shi, H. Song, X. Gao, Solid State Sci. 31, 85–90 (2014)CrossRefGoogle Scholar
  22. 22.
    J. Haider, A. Anbari, O. Le Corre, P. Ferrão, Energy Procedia 119, 332–345 (2017)CrossRefGoogle Scholar
  23. 23.
    R.L. Ziolli, W.F. Jardim, Quim. Nova 21, 319–325 (1998)CrossRefGoogle Scholar
  24. 24.
    G. Corro, U. Pal, N. Tellez, Appl. Catal. B Environ. 129, 39–47 (2013)CrossRefGoogle Scholar
  25. 25.
    G. Gasparotto, G.F. Teixeira, M.A. Cebim, J.A. Varela, L.A. Perazolli, M.A. Zaghete, MRS Online Proce. Lib. Arch 1507, 1–6 (2013)Google Scholar
  26. 26.
    B. Moongraksathum, D.S. Lee, Y.W. Chen, J. Taiwan Inst. Chem. Eng. 68, 455–460 (2016)CrossRefGoogle Scholar
  27. 27.
    W. Zou, C. Ge, M. Lu, S. Wu, Y. Wang, J. Sun, Y. Pu, C. Tang, F. Gao, L. Dong, RSC Adv. 5, 98335–98343 (2015)CrossRefGoogle Scholar
  28. 28.
    Q. Xu, D. Ju, Z. Zhang, S. Yuan, J. Zhang, H. Xu, B. Cao, Sens. Actuators B Chem. 225, 16–23 (2016)CrossRefGoogle Scholar
  29. 29.
    H. Xu, D. Ju, W. Li, J. Zhang, J. Wang, B. Cao, Sens. Actuators B. Chem. 228, 634–642 (2016)CrossRefGoogle Scholar
  30. 30.
    Q. Xu, Z. Zhang, X. Song, S. Yuan, Z. Qiu, H. Xu, B. Cao, Sens. Actuators B Chem. 245, 375–385 (2017)CrossRefGoogle Scholar
  31. 31.
    B. Liu, X. Zhao, C. Terashima, A. Fujishima, K. Nakata, Phys. Chem. Chem. Phys. 16, 8751–8760 (2014)CrossRefGoogle Scholar
  32. 32.
    F.-Q. Ma, J.-W. Yao, Y.-F. Zhang, Y. Wei, RSC Adv. 7, 36288–36296 (2017)CrossRefGoogle Scholar
  33. 33.
    L. Zhang, X. Yuan, H. Wang, X. Chen, Z. Wu, Y. Liu, S. Gu, Q. Jiang, G. Zeng, RSC Adv. 5, 98184–98193 (2015)CrossRefGoogle Scholar
  34. 34.
    T. Xian, H. Yang, J.F. Dai, Z.Q. Wei, J.Y. Ma, W.J. Feng, Mater. Lett. 65, 3254–3257 (2011)CrossRefGoogle Scholar
  35. 35.
    T. Puangpetch, S. Chavadej, T. Sreethawong, Energy Convers. Manag. 52, 2256–2261 (2011)CrossRefGoogle Scholar
  36. 36.
    T. Puangpetch, T. Sreethawong, S. Yoshikawa, S. Chavadej, J. Mol. Catal. A Chem. 312, 97–106 (2009)CrossRefGoogle Scholar
  37. 37.
    C. Jacoboni, Theory of Electron Transport in Semiconductors: A Pathway from Elementary Physics to Nonequilibrium Green Functions, 1st edn. (Springer, Berlin, 2010), p. 590CrossRefGoogle Scholar
  38. 38.
    V. Diesen, M. Jonsson, J. Phys. Chem. C 118, 10083–10087 (2014)CrossRefGoogle Scholar
  39. 39.
    H. Jia, W. He, W.G. Wamer, X. Han, B. Zhang, S. Zhang, Z. Zheng, Y. Xiang, J.J. Yin, J. Phys. Chem. C 118, 21447–21456 (2014)CrossRefGoogle Scholar
  40. 40.
    S. Wu, J. Xiong, J. Sun, Z.D. Hood, W. Zeng, Z. Yang, L. Gu, X. Zhang, S.Z. Yang, ACS Appl. Mater. Interfaces. 9, 16620–16626 (2017)CrossRefGoogle Scholar
  41. 41.
    R. Schaub, P. Thostrup, N. Lopez, E. Lægsgaard, I. Stensgaard, J.K. Nørskov, F. Besenbacher, Phys. Rev. Lett. 87, 266104 (2001)CrossRefGoogle Scholar
  42. 42.
    V.M. Longo, A.T. De Figueiredo, S. De Lázaro, M.F. Gurgel, M.G.S. Costa, C.O. Paiva-Santos, J.A. Varela, E. Longo, V.R. Mastelaro, F.S. De Vicente, A.C. Hernandes, R.W.A. Franco, J. Appl. Phys. 104, 23515 (2008)CrossRefGoogle Scholar
  43. 43.
    S. Zhang, D. Guo, M. Wang, M.S. Javed, C. Hu, Appl. Surf. Sci. 335, 115–120 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ubirajara ColetoJr.
    • 1
    • 2
  • Rafael A. C. Amoresi
    • 1
    • 3
    Email author
  • Vinícius Teodoro
    • 4
  • Isabela M. Iani
    • 1
  • Elson Longo
    • 4
  • Maria A. Zaghete
    • 1
  • Leinig A. Perazolli
    • 1
  1. 1.LIEC-Chemistry Institute, São Paulo State University-UNESPAraraquaraBrazil
  2. 2.Department of ChemistryFederal Institute of São Paulo-IFSPCatanduvaBrazil
  3. 3.Faculty of Engineering of Guaratingueta-UNESPSão PauloBrazil
  4. 4.LIEC-Department of ChemistryUniversidade Federal de São Carlos-UFSCARSão CarlosBrazil

Personalised recommendations