Carbon-nitride-based core–shell nanomaterials: synthesis and applications

  • Qiang Guo
  • Yongli Wan
  • Bingbing Hu
  • Xitao Wang


As a new type of photo-catalyst, graphitic carbon-nitride-based core–shell nanocomposites (nanomaterial@g-C3N4) have shown promising prospect for various applications in the photo-catalysis and other related fields when compared to bare graphitic carbon nitride (g-C3N4) due to their unique physicochemical, optical and electrical properties resulting from the synergistic effect between core and shell, and also the protection of g-C3N4 shell to inhabit the reaggregation, photo-corrosion, oxidation or dissolution of nanocore. In this review, we have systematically summarized the preparation of g-C3N4-based composites, including physical adsorption, hydrothermal growth, thermal vapor condensation and the newly-developed precursor wrapping method according to recent researches. The advantages of g-C3N4-based core–shell composites including their physicochemical properties, stability, optical and electronic properties are highlighted. Various applications are addressed, such as photo-catalytic hydrogen production from water splitting, photo-catalytic degradation of organic pollutants, photo-catalytic reduction of carbon dioxide, and photo-electric anti-corrosion. Various strategies for designing and constructing highly effective g-C3N4-based core–shell composites are also thoroughly proposed, including band-gap and lattice match, optimization of the preparation method of nanocomposites and nanocore characteristics. This review can provide new directions in exploring g-C3N4-based nanomaterials for the applications in photo-catalysis or related fields as well as novel fabrication methods.



We gratefully acknowledge the financial supports from the National Natural Science Foundation of China (Nos. 21276190 and 20806059).


  1. 1.
    W. Jiang, W. Luo, J. Wang, M. Zhang, Y. Zhu, J. Photochem. Photobiol. C 28, 87–115 (2016)CrossRefGoogle Scholar
  2. 2.
    T. Inoue, A. Fujishima, S. Konishi, K. Honda, Nature. 277, 637–638 (1979)CrossRefGoogle Scholar
  3. 3.
    D. Chen, K. Wang, D. Xiang, R. Zong, W. Yao, Y. Zhu, Appl. Catal. B Environ. 147, 554–561 (2014)CrossRefGoogle Scholar
  4. 4.
    S.J. Hong, S. Lee, J.S. Jang, J.S. Lee, Energy Environ. Sci. 4, 1781 (2011)CrossRefGoogle Scholar
  5. 5.
    J. Yu, Y. Hai, M. Jaroniec, J. Colloid Interface Sci. 357, 223–228 (2011)CrossRefGoogle Scholar
  6. 6.
    D. Barreca, P. Fornasiero, A. Gasparotto, V. Gombac, C. Maccato, T. Montini, E. Tondello, ChemSusChem. 2, 230–233 (2009)CrossRefGoogle Scholar
  7. 7.
    P.-W. Pan, Y.-W. Chen, Catal. Commun. 8, 1546–1549 (2007)CrossRefGoogle Scholar
  8. 8.
    S. Ouyang, H. Tong, N. Umezawa, J. Cao, P. Li, Y. Bi, Y. Zhang, J. Ye, J. Am. Chem. Soc. 134, 1974–1977 (2012)CrossRefGoogle Scholar
  9. 9.
    Y. Yamada, K. Yano, D. Hong, S. Fukuzumi, Phys. Chem. Chem. Phys. 14, 5753–5760 (2012)CrossRefGoogle Scholar
  10. 10.
    J. Zhang, S. Liu, J. Yu, M. Jaroniec, J. Mater. Chem. 21, 14655 (2011)CrossRefGoogle Scholar
  11. 11.
    Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J.R. Gong, J. Am. Chem. Soc. 133, 10878–10884 (2011)CrossRefGoogle Scholar
  12. 12.
    M. Abou Asi, L. Zhu, C. He, V.K. Sharma, D. Shu, S. Li, J. Yang, Y. Xiong, Catal. Today. 216, 268–275 (2013)CrossRefGoogle Scholar
  13. 13.
    N. Ahmed, M. Morikawa, Y. Izumi, Catal Today. 185, 263–269 (2012)CrossRefGoogle Scholar
  14. 14.
    M. Morikawa, N. Ahmed, Y. Yoshida, Y. Izumi, Appl. Catal. B Environ. 144, 561–569 (2014)CrossRefGoogle Scholar
  15. 15.
    P. Mazierski, M. Nischk, M. Gołkowska, W. Lisowski, M. Gazda, M.J. Winiarski, T. Klimczuk, A. Zaleska-Medynska, Appl. Catal. B Environ. 196, 77–88 (2016)CrossRefGoogle Scholar
  16. 16.
    G. Yang, Z. Jiang, H. Shi, T. Xiao, Z. Yan, J. Mater. Chem. 20, 5301 (2010)CrossRefGoogle Scholar
  17. 17.
    J. Wang, T. Tsuzuki, B. Tang, X. Hou, L. Sun, X. Wang, ACS Appl. Mater. Interfaces. 4, 3084–3090 (2012)CrossRefGoogle Scholar
  18. 18.
    F. Xu, Y. Yuan, H. Han, D. Wu, Z. Gao, K. Jiang, CrystEngComm. 14, 3615 (2012)CrossRefGoogle Scholar
  19. 19.
    S. Kumar, A. Baruah, S. Tonda, B. Kumar, V. Shanker, B. Sreedhar, Nanoscale. 6, 4830–4842 (2014)CrossRefGoogle Scholar
  20. 20.
    R. Abe, J. Photochem. Photobiol. C 11, 179–209 (2010)CrossRefGoogle Scholar
  21. 21.
    X. Fang, J. Song, T. Pu, C. Wang, C. Yin, J. Wang, S. Kang, H. Shi, Y. Zuo, Y. Wang, L. Cui, Int. J. Hydrog. Energy. 42, 28183–28192 (2017)CrossRefGoogle Scholar
  22. 22.
    X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8, 76–80 (2009)CrossRefGoogle Scholar
  23. 23.
    S. Cao, J. Yu, J. Phys. Chem. Lett. 5, 2101–2107 (2014)CrossRefGoogle Scholar
  24. 24.
    P. Niu, L. Zhang, G. Liu, H.-M. Cheng, Adv. Funct. Mater. 22, 4763–4770 (2012)CrossRefGoogle Scholar
  25. 25.
    J. Mao, T. Peng, X. Zhang, K. Li, L. Ye, L. Zan, Catal. Sci. Technol. 3, 1253 (2013)CrossRefGoogle Scholar
  26. 26.
    K. Maeda, X. Wang, Y. Nishihara, D. Lu, M. Antonietti, K. Domen, Phys. Chem. 113, 4940–4947 (2009)Google Scholar
  27. 27.
    A. Fujishima, X. Zhang, C. R. Chim. 9, 750–760 (2006)CrossRefGoogle Scholar
  28. 28.
    S. Cao, J. Low, J. Yu, M. Jaroniec, Adv. Mater. 27, 2150–2176 (2015)CrossRefGoogle Scholar
  29. 29.
    S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir. 26, 3894–3901 (2010)CrossRefGoogle Scholar
  30. 30.
    L. Ye, J. Liu, Z. Jiang, T. Peng, L. Zan, Appl. Catal. B Environ. 142–143, 1–7 (2013)Google Scholar
  31. 31.
    J. Sun, J. Xu, A. Grafmueller, X. Huang, C. Liedel, G. Algara-Siller, M. Willinger, C. Yang, Y. Fu, X. Wang, M. Shalom, Appl. Catal. B Environ. 205, 1–10 (2017)CrossRefGoogle Scholar
  32. 32.
    L. Huang, H. Xu, R. Zhang, X. Cheng, J. Xia, Y. Xu, H. Li, Appl. Surf. Sci. 283, 25–32 (2013)CrossRefGoogle Scholar
  33. 33.
    Y. Hong, Y. Jiang, C. Li, W. Fan, X. Yan, M. Yan, W. Shi, Appl. Catal. B Environ. 180, 663–673 (2016)CrossRefGoogle Scholar
  34. 34.
    H. Shen, X. Zhao, L. Duan, R. Liu, H. Li, Mater. Sci. Eng. B. 218, 23–30 (2017)CrossRefGoogle Scholar
  35. 35.
    Y. Hou, Y. Gan, Z. Yu, X. Chen, L. Qian, B. Zhang, L. Huang, J. Huang, J. Power Sour. 371, 26–34 (2017)CrossRefGoogle Scholar
  36. 36.
    J. Lin, Z. Pan, X. Wang, ACS Sustain. Chem. Eng. 2, 353–358 (2014)CrossRefGoogle Scholar
  37. 37.
    J. Zhang, M. Zhang, R.Q. Sun, X. Wang, Angew Chem. Int. Ed. Engl. 51, 10145–10149 (2012)CrossRefGoogle Scholar
  38. 38.
    Q. Huang, J. Yu, S. Cao, C. Cui, B. Cheng, Appl. Surf. Sci. 358, 350–355 (2015)CrossRefGoogle Scholar
  39. 39.
    G. Zhang, J. Zhang, M. Zhang, X. Wang, J. Mater. Chem. 22, 8083 (2012)CrossRefGoogle Scholar
  40. 40.
    Z. Zhao, Y. Sun, F. Dong, Nanoscale. 7, 15–37 (2015)CrossRefGoogle Scholar
  41. 41.
    K. Maeda, R. Kuriki, M. Zhang, X. Wang, O. Ishitani, J. Mater. Chem. A. 2, 15146–15151 (2014)CrossRefGoogle Scholar
  42. 42.
    Y. Zheng, L. Lin, B. Wang, X. Wang, Angew Chem Int. Ed. Engl. 54, 12868–12884 (2015)CrossRefGoogle Scholar
  43. 43.
    M. Zhang, X. Bai, D. Liu, J. Wang, Y. Zhu, Appl. Catal. B Environ. 164, 77–81 (2015)CrossRefGoogle Scholar
  44. 44.
    L. Zhao, L. Zhang, H. Lin, Q. Nong, M. Cui, Y. Wu, Y. He, J. Hazardous Mater. 299, 333–342 (2015)CrossRefGoogle Scholar
  45. 45.
    Y. Sun, J. Jiang, Y. Liu, S. Wu, J. Zou, Appl. Surf. Sci. 430, 362–370 (2018)CrossRefGoogle Scholar
  46. 46.
    X. Bai, R. Zong, C. Li, D. Liu, Y. Liu, Y. Zhu, Appl. Catal. B Environ. 147, 82–91 (2014)CrossRefGoogle Scholar
  47. 47.
    H. Yan, H. Yang, J. Alloys Compd. 509, L26–L29 (2011)CrossRefGoogle Scholar
  48. 48.
    R.C. Pawar, Y. Son, J. Kim, S.H. Ahn, C.S. Lee, Curr. Appl. Phys. 16, 101–108 (2016)CrossRefGoogle Scholar
  49. 49.
    Q. Wang, Y. Shi, Z. Du, J. He, J. Zhong, L. Zhao, H. She, G. Liu, B. Su, Eur. J. Inorgan. Chem. 2015, 4108–4115 (2015)Google Scholar
  50. 50.
    F. Di Quarto, C. Sunseri, S. Piazza, M.C. Romano, Phys. Chem. 101, 2519–2525 (1997)Google Scholar
  51. 51.
    M. Sun, Z. Chen, Y. Bu, J. Alloys Compd. 618, 734–741 (2015)CrossRefGoogle Scholar
  52. 52.
    S. Ye, R. Wang, M.-Z. Wu, Y.-P. Yuan, Appl. Surf. Sci. 358, 15–27 (2015)CrossRefGoogle Scholar
  53. 53.
    J. Tian, Q. Liu, A.M. Asiri, A.O. Al-Youbi, X. Sun, Anal. Chem. 85, 5595–5599 (2013)CrossRefGoogle Scholar
  54. 54.
    N. Cheng, J. Tian, Q. Liu, C. Ge, A.H. Qusti, A.M. Asiri, A.O. Al-Youbi, X. Sun, ACS Appl. Mater. Interfaces. 5, 6815–6819 (2013)CrossRefGoogle Scholar
  55. 55.
    J. Tian, Q. Liu, C. Ge, Z. Xing, A.M. Asiri, A.O. Al-Youbi, X. Sun, Nanoscale. 5, 8921–8924 (2013)CrossRefGoogle Scholar
  56. 56.
    C. Pan, J. Xu, Y. Wang, D. Li, Y. Zhu, Adv. Funct. Mater. 22, 1518–1524 (2012)CrossRefGoogle Scholar
  57. 57.
    S. Duan, G. Han, Y. Su, X. Zhang, Y. Liu, X. Wu, B. Li, Langmuir. 32, 6272–6281 (2016)CrossRefGoogle Scholar
  58. 58.
    M. Li, L. Zhang, X. Fan, M. Wu, M. Wang, R. Cheng, L. Zhang, H. Yao, J. Shi, Appl. Catal. B Environ. 201, 629–635 (2017)CrossRefGoogle Scholar
  59. 59.
    L. Liu, Y. Qi, J. Hu, W. An, S. Lin, Y. Liang, W. Cui, Mater. Lett. 158, 278–281 (2015)CrossRefGoogle Scholar
  60. 60.
    Y. Li, X. Wei, H. Li, R. Wang, J. Feng, H. Yun, A. Zhou, RSC Adv. 5, 14074–14080 (2015)CrossRefGoogle Scholar
  61. 61.
    L. Liu, Y. Qi, J. Yang, W. Cui, X. Li, Z. Zhang, Appl. Surf. Sci. 358, 319–327 (2015)CrossRefGoogle Scholar
  62. 62.
    R. Chen, J. Zhang, Y. Wang, X. Chen, J.A. Zapien, C.S. Lee, Nanoscale. 7, 17299–17305 (2015)CrossRefGoogle Scholar
  63. 63.
    Y. Bu, Z. Chen, RSC Adv. 4, 45397–45406 (2014)CrossRefGoogle Scholar
  64. 64.
    L. Liu, Y. Qi, J. Lu, S. Lin, W. An, J. Hu, Y. Liang, W. Cui, RSC Adv. 5, 99339–99346 (2015)CrossRefGoogle Scholar
  65. 65.
    L. Liu, Y. Qi, J. Lu, S. Lin, W. An, Y. Liang, W. Cui, Appl. Catal. B Environ. 183, 133–141 (2016)CrossRefGoogle Scholar
  66. 66.
    Y. Yao, F. Lu, Y. Zhu, F. Wei, X. Liu, C. Lian, S. Wang, J. Hazard. Mater. 297, 224–233 (2015)CrossRefGoogle Scholar
  67. 67.
    J. Zhang, Y. Wang, J. Jin, J. Zhang, Z. Lin, F. Huang, J. Yu, ACS Appl. Mater. Interfaces. 5, 10317–10324 (2013)CrossRefGoogle Scholar
  68. 68.
    X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y. Xie, J. Am. Chem. Soc. 135, 18–21 (2013)CrossRefGoogle Scholar
  69. 69.
    L. Shi, K. Chang, H. Zhang, X. Hai, L. Yang, T. Wang, J. Ye, Small. 12, 4431–4439 (2016)CrossRefGoogle Scholar
  70. 70.
    W. Chen, T.Y. Liu, T. Huang, X.H. Liu, X.J. Yang, Nanoscale. 8, 3711–3719 (2016)CrossRefGoogle Scholar
  71. 71.
    Z. Xing, Y. Chen, C. Liu, J. Yang, J. Xu, Y. Situ, H. Huang, J. Alloys Compd. 708, 853–861 (2017)CrossRefGoogle Scholar
  72. 72.
    B. Lin, H. An, X. Yan, T. Zhang, J. Wei, G. Yang, Appl. Catal. B Environ. 210, 173–183 (2017)CrossRefGoogle Scholar
  73. 73.
    L. Liu, Y. Qi, J. Hu, Y. Liang, W. Cui, Appl. Surf. Sci. 351, 1146–1154 (2015)CrossRefGoogle Scholar
  74. 74.
    L. Ma, G. Wang, C. Jiang, H. Bao, Q. Xu, Appl. Surf. Sci. 430, 263–272 (2018)CrossRefGoogle Scholar
  75. 75.
    A.P. Singh, P. Arora, S. Basu, B.R. Mehta, Int. J. Hydrog. Energy. 41, 5617–5628 (2016)CrossRefGoogle Scholar
  76. 76.
    L. Wang, F. Zhao, Q. Han, C. Hu, L. Lv, N. Chen, L. Qu, Nanoscale. 7, 9694–9702 (2015)CrossRefGoogle Scholar
  77. 77.
    S. Gholizadeh Khasevani, N. Mohaghegh, M.R. Gholami, New J. Chem. 41, 10390–10396 (2017)CrossRefGoogle Scholar
  78. 78.
    T.J. Park, R.C. Pawar, S. Kang, C.S. Lee, RSC Adv. 6, 89944–89952 (2016)CrossRefGoogle Scholar
  79. 79.
    B. Lin, C. Xue, X. Yan, G. Yang, G. Yang, B. Yang, Appl. Surf. Sci. 357, 346–355 (2015)CrossRefGoogle Scholar
  80. 80.
    Y. Zhang, R. Wen, D. Guo, H. Guo, J. Chen, Z. Zheng, Appl. Organomet. Chem. 30, 160–166 (2016)CrossRefGoogle Scholar
  81. 81.
    X. Wang, S. Blechert, M. Antonietti, ACS Catal. 2, 1596–1606 (2012)CrossRefGoogle Scholar
  82. 82.
    J. Liu, J. Huang, H. Zhou, M. Antonietti, ACS Appl. Mater. Interfaces. 6, 8434–8440 (2014)CrossRefGoogle Scholar
  83. 83.
    J. Huang, M. Antonietti, J. Liu, J. Mater. Chem. A. 2, 7686 (2014)CrossRefGoogle Scholar
  84. 84.
    S. Kang, H. Qin, L. Zhang, Y. Huang, X. Bai, X. Li, D. Sun, Y. Wang, L. Cui, Sci Rep. 7, 44338 (2017)CrossRefGoogle Scholar
  85. 85.
    Z. Chen, G. Ma, Z. Chen, Y. Zhang, Z. Zhang, J. Gao, Q. Meng, M. Yuan, X. Wang, G. Liu, Zhou, J.-m. Appl. Surf. Sci. 396, 609–615 (2017)CrossRefGoogle Scholar
  86. 86.
    J. Zhou, M. Zhang, Y. Zhu, Phys. Chem. Chem. Phys. 17, 3647–3652 (2015)CrossRefGoogle Scholar
  87. 87.
    X. Fan, T. Wang, B. Gao, H. Gong, H. Xue, H. Guo, L. Song, W. Xia, X. Huang, J. He, Langmuir. 32, 13322–13332 (2016)CrossRefGoogle Scholar
  88. 88.
    Y. Zou, J.-W. Shi, D. Ma, Z. Fan, L. Lu, C. Niu, Chem. Eng. J. 322, 435–444 (2017)CrossRefGoogle Scholar
  89. 89.
    J. Zhou, M. Zhang, Y. Zhu, Phys. Chem. Chem. Phys. 16, 17627–17633 (2014)CrossRefGoogle Scholar
  90. 90.
    L. Liu, P. Hu, W. Cui, X. Li, Z. Zhang, Int. J. Hydrog. Energy. 42, 17435–17445 (2017)CrossRefGoogle Scholar
  91. 91.
    Z. Yan, Z. Sun, X. Liu, H. Jia, P. Du, Nanoscale. 8, 4748–4756 (2016)CrossRefGoogle Scholar
  92. 92.
    P. Wang, N. Lu, Y. Su, N. Liu, H. Yu, J. Li, Y. Wu, Appl. Surf. Sci. 423, 197–204 (2017)CrossRefGoogle Scholar
  93. 93.
    M. Ning, Z. Chen, L. Li, Q. Meng, Z. Chen, Y. Zhang, M. Jin, Z. Zhang, M. Yuan, X. Wang, G. Zhou, Electrochem. Commun. 87, 13–17 (2018)CrossRefGoogle Scholar
  94. 94.
    L. Ma, H. Fan, K. Fu, S. Lei, Q. Hu, H. Huang, G. He, ACS Sustain. Chem. Eng. 5, 7093–7103 (2017)CrossRefGoogle Scholar
  95. 95.
    D. Tang, G. Zhang, Appl. Surf. Sci. 391, 415–422 (2017)CrossRefGoogle Scholar
  96. 96.
    Y. Hong, C. Li, B. Yin, D. Li, Z. Zhang, B. Mao, W. Fan, W. Gu, W. Shi, Chem. Eng. J. 338, 137–146 (2018)CrossRefGoogle Scholar
  97. 97.
    Z. Zhang, M. Wang, W. Cui, H. Sui, RSC Adv. 7, 8167–8177 (2017)CrossRefGoogle Scholar
  98. 98.
    C. Liu, C. Zhang, J. Wang, Q. Xu, X. Chen, C. Wang, X. Xi, W. Hou, Mater. Lett. 217, 235–238 (2018)CrossRefGoogle Scholar
  99. 99.
    Y. He, L. Zhang, B. Teng, M. Fan, Environ. Sci. Technol. 49, 649–656 (2015)CrossRefGoogle Scholar
  100. 100.
    W. Yu, D. Xu, T. Peng, J. Mater. Chem. A. 3, 19936–19947 (2015)CrossRefGoogle Scholar
  101. 101.
    J. Hao, S. Zhang, F. Ren, Z. Wang, J. Lei, X. Wang, T. Cheng, L. Li, J. Colloid Interface Sci. 508, 419–425 (2017)CrossRefGoogle Scholar
  102. 102.
    S. Liu, L. Ma, H. Zhang, C. Ma, Mater. Sci. Eng. B. 207, 33–38 (2016)CrossRefGoogle Scholar
  103. 103.
    Y. Huang, Y. Wang, Y. Bi, J. Jin, M.F. Ehsan, M. Fu, T. He, RSC Adv. 5, 33254–33261 (2015)CrossRefGoogle Scholar
  104. 104.
    C. Xin, M. Hu, K. Wang, X. Wang, Langmuir. 33, 6667–6676 (2017)CrossRefGoogle Scholar
  105. 105.
    S. Zhu, S. Liang, J. Bi, M. Liu, L. Zhou, L. Wu, X. Wang, Green Chem. 18, 1355–1363 (2016)CrossRefGoogle Scholar
  106. 106.
    Y. Wang, W. Yang, X. Chen, J. Wang, Y. Zhu, Appl. Catal. B Environ. 220, 337–347 (2018)CrossRefGoogle Scholar
  107. 107.
    D. Lu, H. Wang, Q. Shen, K.K. Kondamareddy, D. Neena, J. Phys. Chem. Solids. 106, 76–81 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Qiang Guo
    • 1
  • Yongli Wan
    • 1
  • Bingbing Hu
    • 1
  • Xitao Wang
    • 1
  1. 1.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Technology, College of Chemical Engineering and TechnologyTianjin UniversityTianjinChina

Personalised recommendations