Advertisement

Valence-band offsets of InGaZnO4, LaAlO3, and SrTiO3 heterostructures explained by interface-induced gap states

  • Winfried Mönch
Review
  • 3 Downloads

Abstract

The intrinsic interface-induced gap states (IFIGS) which derive from the virtual gap states of the complex band structure are the fundamental mechanism that determines the band-structure lineup at semiconductor interfaces. The valence-band offsets of heterostructures are composed of a zero-charge-transfer term and an electrostatic-dipole contribution which are given by the difference of the p-type branch-point energies of the IFIGS and of the electronegativities, respectively, of the two semiconductors involved. The valence-band offsets of InGaZnO4, LaAlO3, and SrTiO3 heterostructures are quantitatively and consistently explained by the IFIGS-and-electronegativity concept. The analysis of the experimental InGaZnO4, LaAlO3, and SrTiO3 data yields the p-type branch-point energies as 2.37 ± 0.18 eV, 2.59 ± 0.13 eV, and 2.86 ± 0.14 eV, respectively.

References

  1. 1.
    T. Kamiya, K. Nomura, H. Hosono, Sci. Technol. Adv. Mater. 11, 044305 (2010)CrossRefGoogle Scholar
  2. 2.
    L. Petti, N. Münzenrieder, C. Vogt, H. Faber, L. Beuthe, G. Cantarella, F. Bottacchi, T.D. Anthopoulos, G. Tröster, Appl. Phys. Rev. 3, 021303 (2016)CrossRefGoogle Scholar
  3. 3.
    E.A. Douglas, A. Scheurmann, R.P. Davies, B.P. Gila, H. Cho, V. Craciun, E.S. Lambers, S.J. Pearton, F. Ren, Appl. Phys. Lett. 98, 242110 (2011)CrossRefGoogle Scholar
  4. 4.
    H. Cho, K.-W. Kim, E.A. Douglas, B.P. Gila, V. Craciun, E.S. Lambers, D.P. Norton, F. Ren, S.J. Pearton, ECS Trans. 50, 367 (2013)CrossRefGoogle Scholar
  5. 5.
    J.K. Kim, B.P. Gila, S.J. Pearton, F. Ren, J. Nanosci. Nanotechnol. 14, 3925 (2014)CrossRefGoogle Scholar
  6. 6.
    J.C. Park, K.-W. Kim, B.P. Gila, E.S. Lamber, D.P. Norton, S.J. Pearton, F. Ren, J.K. Kim, H. Cho, J. Nanosci. Nanotechnol. 14, 8445 (2014)CrossRefGoogle Scholar
  7. 7.
    D.C. Hays, B.P. Gila, E.S. Lambers, S.J. Pearton, F. Ren, Vacuum 116, 60 (2015)CrossRefGoogle Scholar
  8. 8.
    D.C. Hays, B.P. Gila, S.J. Pearton, F. Ren, ECS J. Solid State Sci. Technol. 5, 680 (2016)CrossRefGoogle Scholar
  9. 9.
    K. Lee, K. Nomura, H. Yanagi, T. Kamiya, E. Ikenaga, T. Sugiyama, K. Kobayashi, H. Hosono, J. Appl. Phys. 112, 033713 (2012)CrossRefGoogle Scholar
  10. 10.
    Z.-Y. Xie, H.-L. Lu, S.-S. Xu, Y. Geng, Q.-Q. Sun, S.-J. Ding, D.W. Zhang, Appl. Phys. Lett. 101, 252111 (2012)CrossRefGoogle Scholar
  11. 11.
    J. Yao, S. Zhang, L. Gong, Appl. Phys. Lett. 101, 093508 (2012)CrossRefGoogle Scholar
  12. 12.
    X.F. Chen, G. He, J.G. Lv, M. Liu, P.H. Wang, X.S. Chen, Z.Q. Sun, J. Alloys Comput. 647, 1035 (2015)CrossRefGoogle Scholar
  13. 13.
    C. Hays, B.P. Gila, S.J. Pearton, B.-J. Kim, F. Ren, Vacuum 125, 113 (2016)CrossRefGoogle Scholar
  14. 14.
    D.C. Hays, B.P. Gila, S.J. Pearton, R. Thorpe, F. Ren, Vacuum 136, 137 (2017)CrossRefGoogle Scholar
  15. 15.
    D.C. Hays, B.P. Gila, S.J. Pearton, F. Ren, Appl. Phys. Rev. 4, 021301 (2017)CrossRefGoogle Scholar
  16. 16.
    A. Ohtomo, H.J. Hwang, Nature 427, 423 (2004)CrossRefGoogle Scholar
  17. 17.
    Y. Segal, J.H. Ngai, J.W. Reiner, F.J. Walker, C.H. Ahn, Phys. Rev. B 80, 241107 (2009)CrossRefGoogle Scholar
  18. 18.
    L. Qiao, T.C. Droubay, T.C. Kaspar, P.V. Sushko, S.A. Chambers, Surf. Sci. 605, 1381 (2011)CrossRefGoogle Scholar
  19. 19.
    U. Treske, N. Heming, M. Knupfer, B. Büchner, E. Di Gennaro, A. Khare, U.S. Di Uccio, F.M. Granozio, S. Krause, A. Koitzsch, Sci. Rep. 5, 14506 (2015)CrossRefGoogle Scholar
  20. 20.
    T. Susaki, S. Ueda, K. Matsuzaki, T. Kobayashi, Y. Toda, H. Hosono, Phys. Rev. B 94, 075311 (2016)CrossRefGoogle Scholar
  21. 21.
    R.G. Southwick III, W.B. Knowlton, IEEE Trans. Device Mater. Release 6, 136 (2006)CrossRefGoogle Scholar
  22. 22.
    R.G. Southwick III, A. Sup, A. Jain, W.B. Knowlton, IEEE Trans. Device Mater. Release 11, 236 (2011)CrossRefGoogle Scholar
  23. 23.
    R.L. Anderson, Solid-State Electron. 5, 341 (1962)CrossRefGoogle Scholar
  24. 24.
    N.F. Mott, Proc. Cambridge Philos. Soc. 34, 568 (1938)CrossRefGoogle Scholar
  25. 25.
    W. Schottky, Physik. Zeitschr. 41, 570 (1940)Google Scholar
  26. 26.
    J. Bardeen, Phys. Rev. 71, 717 (1947)CrossRefGoogle Scholar
  27. 27.
    C.A. Mead, Solid-State Electron. 9, 1023 (1966)CrossRefGoogle Scholar
  28. 28.
    H. Kroemer, Crit. Rev. Solid State Mater. Sci. 5, 555 (1975)CrossRefGoogle Scholar
  29. 29.
    V. Heine, Phys. Rev. 138, A1689 (1965)CrossRefGoogle Scholar
  30. 30.
    C. Tejedor, F. Flores, J. Phys. C 11, L19 (1978)CrossRefGoogle Scholar
  31. 31.
    W. Mönch, Electronic Properties Of Semiconductor Interfaces (Springer, Berlin, 2004)CrossRefGoogle Scholar
  32. 32.
    L.N. Pauling, The Nature of the Chemical Bond (Cornell University Press, Ithaca, 1939)Google Scholar
  33. 33.
    A.R. Miedema, P.F. de Châtel, F.R. de Boer, Physica 100B, 1 (1980)CrossRefGoogle Scholar
  34. 34.
    W. Mönch, in Festkörperprobleme: A Advances In Solid State Physics, ed. by P. Grosse On the Present Understanding of Schottky Contacts, vol 26 (Vieweg, Braunschweig, 1986), p. 67Google Scholar
  35. 35.
    W. Mönch, Phys. Rev. Lett. 58, 1260 (1987)CrossRefGoogle Scholar
  36. 36.
    W. Mönch, Appl. Surf. Sci. 92, 367 (1996)CrossRefGoogle Scholar
  37. 37.
    W. Mönch, Appl. Phys. Lett. 91, 042117 (2007)CrossRefGoogle Scholar
  38. 38.
    W. Mönch, Appl. Phys. Lett. 93, 172118 (2008)CrossRefGoogle Scholar
  39. 39.
    W. Mönch, J. Appl. Phys. 107, 013706 (2010)CrossRefGoogle Scholar
  40. 40.
    W. Mönch, J. Appl. Phys. 109, 113724 (2011)CrossRefGoogle Scholar
  41. 41.
    W. Mönch, J. Mater. Sci. 27, 1444 (2016)Google Scholar
  42. 42.
    W. Mönch, in Electronic Properties of Semiconductor Interfaces, ed. by S. Kasap, P. Capper. Handbook of Electronic and Photonic Materials, vol 2 (Springer, Berlin, 2017), p. 175Google Scholar
  43. 43.
    E.A. Kraut, R.W. Grant, J.R. Waldrop, S.P. Kowalczyk, Phys. Rev. Lett. 44, 1620 (1980)CrossRefGoogle Scholar
  44. 44.
    T. Kamiya, K. Nomura, H. Hosono, Phys. Status Solidi A 206, 860 (2009)CrossRefGoogle Scholar
  45. 45.
    W. Mönch, J. Appl. Phys. 111, 073706 (2012)CrossRefGoogle Scholar
  46. 46.
    A. Dimoulas, P. Tsipas, A. Sotiropoulos, E.K. Evangelou, Appl. Phys. Lett. 89, 252110 (2006)CrossRefGoogle Scholar
  47. 47.
    W. Mönch, J. Vac. Sci. Technol. B 17, 1867 (1999)CrossRefGoogle Scholar
  48. 48.
    V.V. Afanasev, A. Stesmans, R. Droopad, M. Passlack, L.F. Edge, D.G. Schlom, Appl. Phys. Lett. 89, 092103 (2006)CrossRefGoogle Scholar
  49. 49.
    Y.Y. Mi, S.J. Wang, J.W. Chai, J.S. Pan, A.C.H. Huan, M. Ning, C.K. Ong, Appl. Phys. Lett. 89, 202107 (2006)CrossRefGoogle Scholar
  50. 50.
    R. Yasuharaet, M. Komatsu, H. Takahashi, S. Toyoda, J. Okabayashi, H. Kumigashira, M. Oshima, D. Kukuruznyak, T. Chikyow, Appl. Phys. Lett. 89, 122904 (2006)CrossRefGoogle Scholar
  51. 51.
    Z.Q. Liu, W.K. Chim, S.Y. Chiam, J.S. Pan, C.M. Ng, J. Appl. Phys. 109, 093701 (2011)CrossRefGoogle Scholar
  52. 52.
    D. Cao, X. Cheng, T. Jia, D. Xu, L. Zheng, Z. Wang, C. Xia, Y. Yu, Adv. Mater. Res. 721, 24 (2013)CrossRefGoogle Scholar
  53. 53.
    J.W. Liu, M.Y. Liao, M. Imura, H. Oosato, E. Watanabe, A. Tanaka, H. Iwai, Y. Koide, J. Appl. Phys. 114, 084108 (2013)CrossRefGoogle Scholar
  54. 54.
    P.H. Carey, I.V.F. Ren, D.C. Hays, B.P. Gila, S.J. Pearton, S. Jang, A. Kuramata, J. Vac. Sci. Technol. B 35, 041201 (2017)CrossRefGoogle Scholar
  55. 55.
    E. Chernova, C. Brooks, D. Chvostova, Z. Bryknar, A. Dejneka, M. Tyunia, Optical Mater. Express 7, 3844 (2017)CrossRefGoogle Scholar
  56. 56.
    P.K. Gogoi, D. Schmidt, Phys. Rev. B 93, 075204 (2016)CrossRefGoogle Scholar
  57. 57.
    S.A. Chambers, Y. Liang, Z. Yu, R. Droopad, J. Ramdani, J. Vac. Sci. Technol. A 19, 934 (2001)CrossRefGoogle Scholar
  58. 58.
    A.C. Tuan, T.C. Kaspar, T. Droubay, J.W. Rogers Jr., S.A. Chambers, Appl. Phys. Lett. 83, 3734 (2003)CrossRefGoogle Scholar
  59. 59.
    F. Amy, A.S. Wan, A. Kahn, F.J. Walker, R.A. McKee, J. Appl. Phys. 96, 1635 (2004)CrossRefGoogle Scholar
  60. 60.
    S.A. Chambers, T. Droubay, T.C. Kaspar, M. Gutowski, J. Vac. Sci. Technol. B 22, 2205 (2004)CrossRefGoogle Scholar
  61. 61.
    Y. Liang, J. Curless, D. McCready, Appl. Phys. Lett. 86, 082905 (2005)CrossRefGoogle Scholar
  62. 62.
    C.H. Jia, Y.H. Chen, X.L. Zhou, A.L. Yang, G.L. Zheng, X.L. Liu, S.Y. Yang, Z.G. Wang, J. Phys. D 42, 095305 (2009)CrossRefGoogle Scholar
  63. 63.
    S.A. Chambers, T. Ohsawa, C.M. Wang, I. Lyubinetsky, J.E. Jaffe, Surf. Sci. 603, 771 (2009)CrossRefGoogle Scholar
  64. 64.
    Z. Li, B. Zhang, J. Wang, J. Liu, X. Liu, S. Yang, Q. Zhu, Z. Wang, Nanoscale Res. Lett. 6, 193 (2011)CrossRefGoogle Scholar
  65. 65.
    Z. Yang, W. Huang, J. Hao, Appl. Phys. Lett. 103, 031919 (2013)CrossRefGoogle Scholar
  66. 66.
    P. Schütz, F. Pfaff, P. Scheiderer, Y.Z. Chen, N. Pryds, M. Gorgoi, M. Sing, R. Claessen, Phys. Rev. B 91, 165118 (2015)CrossRefGoogle Scholar
  67. 67.
    K.J. Kormondy, A.B. Posadas, T.Q. Ngo, S. Lu, N. Goble, J. Jordan-Sweet, X.P.A. Gao, D.J. Smith, M.R. McCartney, J.G. Ekerdt, A.A. Demkov, J. Appl. Phys. 117, 095303 (2015)CrossRefGoogle Scholar
  68. 68.
    S.A. Chambers, Y. Du, R.B. Comes, S.R. Spurgeon, P.V. Sushko, Appl. Phys. Lett. 110, 082104 (2017)CrossRefGoogle Scholar
  69. 69.
    W. Walukiewicz, Phys. B 302–303, 123 (2001)CrossRefGoogle Scholar
  70. 70.
    R.E. Thomas, J.W. Gibson, G.A. Haas, Appl. Surf. Sci. 5, 398 (1980)CrossRefGoogle Scholar
  71. 71.
    C.I. Wu, A. Kahn, Appl. Surf. Sci. 162–163, 250 (2000)CrossRefGoogle Scholar
  72. 72.
    W. Mönch, Semiconductor Surfaces and Interfaces, 3rd edn. (Springer, Berlin, 2001)CrossRefGoogle Scholar
  73. 73.
    R. Schafranek, A. Klein, Solid State Ionics 177, 1659 (2006)CrossRefGoogle Scholar
  74. 74.
    G. Xiong, R. Shao, T.C. Droubay, A.G. Joly, K.M. Beck, S.A. Chambers, W.P. Hess, Adv. Funct. Mater. 17, 2133 (2007)CrossRefGoogle Scholar
  75. 75.
    E. Bersch, S. Rangan, R.A. Bartynski, Phys. Rev. B 78, 085114 (2008)CrossRefGoogle Scholar
  76. 76.
    M. Mohamed, K. Irmscher, C. Janowitz, Z. Galazka, R. Manzke, R. Fornari, Appl. Phys. Lett. 101, 132106 (2012)CrossRefGoogle Scholar
  77. 77.
    Z.Q. Liu, W.K. Chim, S.Y. Chiam, J.S. Pan, C.M. Ng, J. Mater. Chem. 22, 17887 (2012)CrossRefGoogle Scholar
  78. 78.
    M. Kumar, B. Roul, T.N. Bhat, M.K. Rajpalke, A.T. Kalghatgi, S.B. Krupanidhi, Thin Solid Films 520, 4911 (2012)CrossRefGoogle Scholar
  79. 79.
    M. Nazarzadehmoafi, S. Machulik, F. Neske, V. Scherer, C. Janowitz, Z. Galazka, M. Mulazzi, R. Manzke, Appl. Phys. Lett. 105, 162104 (2014)CrossRefGoogle Scholar
  80. 80.
    W. Mönch, Europhys. Lett. 27, 479 (1994)CrossRefGoogle Scholar
  81. 81.
    J. Tersoff, Phys. Rev. Lett. 52, 465 (1984)CrossRefGoogle Scholar
  82. 82.
    J. Tersoff, Phys. Rev. B 30, 4874 (1984)CrossRefGoogle Scholar
  83. 83.
    W. Mönch, J. Appl. Phys. 80, 5076 (1996)CrossRefGoogle Scholar
  84. 84.
    W. Mönch, in Wide-Gap Chalcopyrites, ed. by S. Siebentritt, U. Rau. Band Structure Lineup at I–III–VI2 Schottky Contacts and Heterostructures (Springer, Berlin, 2006), p. 9CrossRefGoogle Scholar
  85. 85.
    V.N. Brudnyi, S.N. Grinyaev, V.E. Stepanov, Phys. B 212, 429 (1995)CrossRefGoogle Scholar
  86. 86.
    V.N. Brudnyi, S.Yu Sarkisov, A.V. Kosobutsky, Semicond. Sci. Technol. 30, 115019 (2015)CrossRefGoogle Scholar
  87. 87.
    J. Robertson, J. Vac. Sci. Technol. B 18, 1785 (2000)CrossRefGoogle Scholar
  88. 88.
    P.W. Peacock, J. Robertson, J. Appl. Phys. 92, 4712 (2002)CrossRefGoogle Scholar
  89. 89.
    J. Robertson, B. Falabretti, J. Appl. Phys. 100, 014111 (2006)CrossRefGoogle Scholar
  90. 90.
    A. Schleife, F. Fuchs, C. Rödl, J. Furthmüller, F. Bechstedt, Appl. Phys. Lett. 94, 012104 (2009)CrossRefGoogle Scholar
  91. 91.
    B. Höffling, A. Schleife, C. Rödl, F. Bechstedt, Phys. Rev. B 85, 035305 (2012)CrossRefGoogle Scholar
  92. 92.
    A. Belabbes, C. Panse, J. Furthmüller, F. Bechstedt, Phys. Rev. B 86, 075208 (2012)CrossRefGoogle Scholar
  93. 93.
    Y. Hinuma, A. Grüneis, G. Kresse, F. Oba, Phys. Rev. B 90, 155405 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversität Duisburg-EssenDuisburgGermany

Personalised recommendations