Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 23, pp 20271–20279 | Cite as

Congo red photomineralization over Co3O4/CoTe common cation nanocomposites

  • Adeel Zia
  • Saher Hamid
  • Muhammad Fahad EhsanEmail author
  • Shafqat Ul Allah
  • Muhammad Naeem Ashiq
  • Afzal Shah


Due to increasing energy demands and environmental pollution, it is need of the hour to develop some eco-friendly technologies that can overcome these two major issues. Nanotechnology and photocatalysis provide the best solution for the energy crisis and environmental pollution. Here, in this work, we report metal oxide (Co3O4), metal chalcogenide (CoTe) and their nanocomposites (Co3O4/CoTe) to benefit from synergy attributed to their unique electronic properties for the photocatalytic degradation of Congo red dye, which is a major industrial pollutant. The hydrothermally synthesized photocatalysts are further characterized via various techniques including powder X-ray diffraction, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy and UV–Visible diffused reflectance spectroscopy (DRS) which endorse their successful synthesis. Amongst the as-synthesized photocatalysts, the nanocomposites exhibited better photocatalytic activity as compared to their individual counterparts which is hereby attributed to reduced charge recombination, suitable band alignment in the heterostructure as well as to the presence of common cation.



The author (M.F. Ehsan) is grateful to SNS NUST for providing us adequate funds and all the lab facilities to carry out this work.


  1. 1.
    R.S. Blackburn, Environ. Sci. Technol. 38(18), 4905–4909 (2004)CrossRefGoogle Scholar
  2. 2.
    D. Chatterjee, S. Dasgupta, Photochem. Photobiol. 6(2–3), 186–205 (2005)CrossRefGoogle Scholar
  3. 3.
    X. Shen, L. Zhu, C. Huang, H. Tang, Z. Yu, F. Deng, J. Mater. Chem. 19(27), 4843–4851 (2009)CrossRefGoogle Scholar
  4. 4.
    R.H. Waldemer, P.G. Tratnyek, R.L. Johnson, J.T. Nurmi, Environ. Sci. Technol. 41(3), 1010–1015 (2007)CrossRefGoogle Scholar
  5. 5.
    S.P. Meshram, P.V. Adhyapak, S.K. Pardeshi, I.S. Mulla, D.P. Amalnerkar, Powder Technol. 318, 120–127 (2017)CrossRefGoogle Scholar
  6. 6.
    S. Yang, C.Y. Xu, B.Y. Zhang, L. Yang, S.P. Hu, L. Zhen, J. Colloid Interface Sci. 491, 230–237 (2017)CrossRefGoogle Scholar
  7. 7.
    S.G. Kumar, K.K. Rao, Appl. Surf. Sci. 391, 124–148 (2017)CrossRefGoogle Scholar
  8. 8.
    K.S. Yao, T.C. Cheng, S.J. Li, L.Y. Yang, K.C. Tzeng, C.Y. Chang, Y. Ko, Surf. Coat. Technol. 203(5–7), 922–924 (2008)CrossRefGoogle Scholar
  9. 9.
    H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, Y. Ichihashi, F. Goto, M. Anpo, J. Synchrotron Radiat. 8(2), 569–571 (2001)CrossRefGoogle Scholar
  10. 10.
    M. Anpo, M. Takeuchi, J. Catal. 216(1–2), 505–516 (2003)CrossRefGoogle Scholar
  11. 11.
    T.S. Natarajan, K.R. Thampi, R. Tayade, J. Appl. Catal. B 227, 296–311 (2018)CrossRefGoogle Scholar
  12. 12.
    M.C. Sekhar, B.P. Reddy, K. Mallikarjuna, G. Shanmugam, C.H. Ahn, S.H. Park, Mater. Res. Express 5(1), 015024 (2018)CrossRefGoogle Scholar
  13. 13.
    M. Hamadanian, A. Reisi-Vanani, A. Majedi, J. Iran. Chem. Soc. 7(2), S52–S58 (2010)CrossRefGoogle Scholar
  14. 14.
    S. Pourmasoud, A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, J. Mol. Struct. 1157, 607–615 (2018)CrossRefGoogle Scholar
  15. 15.
    S.S. Hosseinpour-Mashkani, A. Sobhani-Nasab, J. Mater. Sci. Mater. Electron. 28(21), 16459–16466 (2017)CrossRefGoogle Scholar
  16. 16.
    M. Eghbali-Arani, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, S. Pourmasoud, J. Electron. Mater. 47(7), 3757–3769 (2018)CrossRefGoogle Scholar
  17. 17.
    M. Eghbali-Arani, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, F. Ahmadi, S. Pourmasoud, Ultrason. Sonochem. 43, 120–135 (2018)CrossRefGoogle Scholar
  18. 18.
    J.H. Sun, S.Y. Dong, Y.K. Wang, S.P. Sun, J. Hazard. Mater. 172(2–3), 1520–1526 (2009)CrossRefGoogle Scholar
  19. 19.
    F. Chen, Y. Cao, D. Jia, X. Niu, Ceram. Int. 39(2), 1511–1517 (2013)CrossRefGoogle Scholar
  20. 20.
    T. Yanagida, Y. Sakata, H. Imamura, Chem. Lett. 33(6), 726–727 (2004)CrossRefGoogle Scholar
  21. 21.
    Y. Zhou, Z. Tian, Z. Zhao, Q. Liu, J. Kou, X. Chen, Z. Zou, ACS Appl. Mater. Interfaces 3(9), 3594–3601 (2011)CrossRefGoogle Scholar
  22. 22.
    S.C. Yan, S.X. Ouyang, J. Gao, M. Yang, J.Y. Feng, X.X. Fan, Z.G. Zou, Angew. Chem. 122(36), 6544–6548 (2010)CrossRefGoogle Scholar
  23. 23.
    M.S. Khan, M.N. Ashiq, M.F. Ehsan, T. He, S. Ijaz, Appl. Catal. A 487, 202–209 (2014)CrossRefGoogle Scholar
  24. 24.
    C. Han, L. Ge, C. Chen, Y. Li, X. Xiao, Y. Zhang, L. Guo, Appl. Catal. B 147, 546–553 (2014)CrossRefGoogle Scholar
  25. 25.
    M.F. Ehsan, T. He, Appl. Catal. B 166, 345–352 (2015)CrossRefGoogle Scholar
  26. 26.
    R. Han, D. Ding, Y. Xu, W. Zou, Y. Wang, Y. Li, L. Zou, Bioresour. Technol. 99(8), 2938–2946 (2008)CrossRefGoogle Scholar
  27. 27.
    X.Y. Xue, S. Yuan, L.L. Xing, Z.H. Chen, B. He, Y.J. Chen, Chem. Commun. 47(16), 4718–4720 (2011)CrossRefGoogle Scholar
  28. 28.
    L. Jiang, Y.J. Zhu, Eur. J. Inorg. Chem. 2010(8), 1238–1243 (2010)CrossRefGoogle Scholar
  29. 29.
    F. Gu, S.F. Wang, M.K. Lü, G.J. Zhou, D. Xu, D.R. Yuan, J. Phys. Chem. B 108(24), 8119–8123 (2004)CrossRefGoogle Scholar
  30. 30.
    F. Gu, C. Li, Y. Hu, L. Zhang, J. Cryst. Growth 304(2), 369–373 (2007)CrossRefGoogle Scholar
  31. 31.
    G. Wang, X. Shen, J. Horvat, B. Wang, H. Liu, D. Wexler, J. Yao, J. Phys. Chem. C 113(11), 4357–4361 (2009)CrossRefGoogle Scholar
  32. 32.
    K.J. Kim, Y.R. Park, Solid State Commun. 127(1), 25–28 (2003)CrossRefGoogle Scholar
  33. 33.
    V.R. Shinde, S.B. Mahadik, T.P. Gujar, C.D. Lokhande, Appl. Surf. Sci. 252(20), 7487–7492 (2006)CrossRefGoogle Scholar
  34. 34.
    A. Louardi, A. Rmili, F. Ouachtari, A. Bouaoud, B. Elidrissi, H. Erguig, J. Alloys Compd. 509(37), 9183–9189 (2011)CrossRefGoogle Scholar
  35. 35.
    R. Xu, H.C. Zeng, Langmuir 20(22), 9780–9790 (2004)CrossRefGoogle Scholar
  36. 36.
    N.A. Barakat, M.S. Khil, F.A. Sheikh, H.Y. Kim, J. Phys. Chem. C 112(32), 12225–12233 (2008)CrossRefGoogle Scholar
  37. 37.
    X.Z. Li, K.L. Wu, C. Dong, S.H. Xia, Y. Ye, X.W. Wei, Mater. Lett. 130, 97–100 (2014)CrossRefGoogle Scholar
  38. 38.
    S. Lan, L. Liu, R. Li, Z. Leng, S. Gan, Ind. Eng. Chem. Res. 53(8), 3131–3139 (2014)CrossRefGoogle Scholar
  39. 39.
    J. Zhao, X. Yang, Build. Environ. 38(5), 645–654 (2003)CrossRefGoogle Scholar
  40. 40.
    D. Malwal, P. Gopinath, Catal. Sci. Technol. 6(12), 4458–4472 (2016)CrossRefGoogle Scholar
  41. 41.
    P.R. Chowdhury, K.G. Bhattacharyya, RSC Adv. 5(112), 92189–92206 (2015)CrossRefGoogle Scholar
  42. 42.
    C. Priester, Y. Foulon, G. Allan, Phys. Rev. B 49(4), 2919 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Natural Sciences (SNS)National University of Sciences and Technology (NUST)IslamabadPakistan
  2. 2.Institute of Chemical SciencesB.Z.U.MultanPakistan
  3. 3.Institut für Technische ChemieLeibniz Universitat HannoverHannoverGermany
  4. 4.Department of ChemistryQuaid-e-Azam UniversityIslamabadPakistan

Personalised recommendations