Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 23, pp 20260–20270 | Cite as

The electromagnetic properties and microwave absorbing performance of titanium carbide attached single-walled carbon nanotubes

  • Mouhui Yan
  • Yifan Zhang
  • Yanghao Fang
  • Liming Yu
  • Yi Liu
  • Xinluo ZhaoEmail author


The titanium carbide nanoparticles attached single-walled carbon nanotubes (TiC-SWCNTs) were mass-produced by an argon–hydrogen direct current arc discharge method using TiO2 and Fe added carbon rod as anode. The composites of TiC-SWCNTs in the paraffin matrix were investigated in the frequency range of 2–18 GHz by a vector network analyzer. The electromagnetic (EM) parameter and reflection loss (RL) properties were simulated by transmission line theory and the microwave absorption mechanisms for the dielectric loss and magnetic loss were discussed in detail. The results indicate that the TiC-SWCNTs prepared by 4 at.% TiO2 added anode exhibited the best microwave absorption property due to better impedance matching, whose RL value reached − 45.6 dB at 14.2 GHz and the absorption bandwidth below − 10 dB was up to 5.7 GHz. Furthermore, the matching thickness of the absorber is 1.8 mm and the filler loading of TiC-SWCNTs in the matrix is 20 wt%. It is expected that the TiC attached SWCNTs nanocomposite will be an excellent candidate for microwave absorption and provide a new idea to prepare weak magnetic EM wave absorber.



This work is supported by the National Natural Science Foundation of China (Grant Nos. 11544011, 51202137, 10974131, and 91641128), and was partly sponsored by the Science and Technology Commission of Shanghai Municipality (15ZR1416500).

Supplementary material

10854_2018_159_MOESM1_ESM.docx (851 kb)
Supplementary material: See supplementary material for frequency dependences of \(\mu ^{\prime\prime}{(\mu ^{\prime})^{ - 2}}{f^{ - 1}}\) values of TiC-SWCNTs nanocomposites and TGA analysis of sample A0, A4. (DOCX 851 KB)


  1. 1.
    M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, Carbon 48, 788–796 (2010)CrossRefGoogle Scholar
  2. 2.
    H.L. Lv, G.B. Ji, W. Liu, H.Q. Zhang, Y.W. Du, J. Mater. Chem. C 3, 10232–10241 (2015)CrossRefGoogle Scholar
  3. 3.
    T.Y. Huang, M. He, Y.M. Zhou, W.L. Pan, S.W. Li, B.B. Ding, S. Huang, Y. Tong, J. Mater. Sci. Mater. Electron. 28, 7622–7632 (2017)CrossRefGoogle Scholar
  4. 4.
    S. Iijima, Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  5. 5.
    M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Science 339, 535–539 (2013)CrossRefGoogle Scholar
  6. 6.
    D.S. Bychanok, A.G. Paddubskaya, P.P. Kuzhir, S.A. Maksimenko, C. Brosseau, J. Macutkevic, S. Bellucci, Appl. Phys. Lett. 103, 243104 (2013)CrossRefGoogle Scholar
  7. 7.
    Y.L. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, Nano Lett. 5, 2131–2134 (2005)CrossRefGoogle Scholar
  8. 8.
    C.A. Grimes, C. Mungle, D. Kouzoudis, S. Fang, P.C. Eklund, Chem. Phys. Lett. 319, 460–464 (2000)CrossRefGoogle Scholar
  9. 9.
    J.P. Lu, Phys. Rev. Lett. 74, 1123–1126 (1995)CrossRefGoogle Scholar
  10. 10.
    P.C.P. Watts, D.R. Ponnampalam, W.K. Hsu, A. Barnes, B. Chambers, Chem. Phys. Lett. 378, 609–614 (2003)CrossRefGoogle Scholar
  11. 11.
    M.L. Wang, K. An, Y.H. Fang, G.T. Wei, J. Yang, L.M. Sheng, L.M. Yu, X.L. Zhao, J. Mater. Sci. Mater. Electron. 28, 12475–12483 (2017)CrossRefGoogle Scholar
  12. 12.
    M.C. Duan, L.M. Yu, L.M. Sheng, K. An, W. Ren, X.L. Zhao, J. Appl. Phys. 115, 174101 (2014)CrossRefGoogle Scholar
  13. 13.
    G. Li, L.M. Sheng, L.M. Yu, K. An, W. Ren, X.L. Zhao, Mater. Sci. Eng. B 193, 153–159 (2015)CrossRefGoogle Scholar
  14. 14.
    Y.H. Fang, X.T. Tang, X. Sun, Y.F. Zhang, J.W. Zhao, L.M. Yu, Y. Liu, X.L. Zhao, J. Appl. Phys. 121, 224301 (2017)CrossRefGoogle Scholar
  15. 15.
    F.S. Wen, F. Zhang, Z.Y. Liu, J. Phys. Chem. C 115, 14025–14030 (2011)CrossRefGoogle Scholar
  16. 16.
    B. Yang, Y. Wu, X.P. Li, R.H. Yu, Mater. Des. 136, 13–22 (2017)CrossRefGoogle Scholar
  17. 17.
    X.Y. Yuan, L.F. Cheng, Y.J. Zhang, S.W. Guo, L.T. Zhang, Mater. Des. 92, 563–570 (2016)CrossRefGoogle Scholar
  18. 18.
    H.J. Dai, E.W. Wong, Y.Z. Lu, S.S. Fan, C.M. Lieber, Nature 375, 769–772 (1995)CrossRefGoogle Scholar
  19. 19.
    Y. Wang, F. Luo, W.C. Zhou, D.M. Zhu, Ceram. Int. 40, 10749–10754 (2014)CrossRefGoogle Scholar
  20. 20.
    X.J. Sha, N.M. Xiao, Y.J. Guan, X.S. Yi, J. Mater. Sci. Technol. 34, 1953–1958 (2018)CrossRefGoogle Scholar
  21. 21.
    H. Meng, K.P. Song, H. Wang, J.J. Jiang, D. Li, Z. Han, Z.D. Zhang, J. Alloys Compd. 509, 490–493 (2011)CrossRefGoogle Scholar
  22. 22.
    S. Iijima, T. Ichihashi, Nature 363, 603–605 (1993)CrossRefGoogle Scholar
  23. 23.
    D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Nature 363, 605–607 (1993)CrossRefGoogle Scholar
  24. 24.
    T.C. Zou, H.P. Li, N.Q. Zhao, C.S. Shi, J. Alloys Compd. 496, L22–L24 (2010)CrossRefGoogle Scholar
  25. 25.
    Y.L. Zhou, J. Muhammad, X.F. Zhang, D.X. Wang, Y.P. Duan, X.L. Dong, Z.D. Zhang, RSC Adv. 8, 6397–6405 (2018)CrossRefGoogle Scholar
  26. 26.
    X.Y. Yuan, L.F. Cheng, L.T. Zhang, J. Alloys Compd. 622, 282–287 (2015)CrossRefGoogle Scholar
  27. 27.
    X.F. Zhang, X.L. Dong, H. Huang, Y.Y. Liu, W.N. Wang, X.G. Zhu, B. Lv, J.P. Lei, Appl. Phys. Lett. 89, 053115 (2006)CrossRefGoogle Scholar
  28. 28.
    L. Fang, L.M. Sheng, K. An, L.M. Yu, W. Ren, Y. Ando, X.L. Zhao, Physica E 50, 116–121 (2013)CrossRefGoogle Scholar
  29. 29.
    L.M. Sheng, L. Shi, K. An, L.M. Yu, Y. Ando, X.L. Zhao, Chem. Phys. Lett. 502, 101–106 (2011)CrossRefGoogle Scholar
  30. 30.
    A.M. Nicolson, G.F. Ross, IEEE Trans. Instrum. Meas. 19, 377–382 (1970)CrossRefGoogle Scholar
  31. 31.
    Y. Saito, M. Okuda, T. Koyama, Surf. Rev. Lett. 3, 863–867 (1996)CrossRefGoogle Scholar
  32. 32.
    M. Rajendran, R.C. Pullar, A.K. Bhattacharya, D. Das, S.N. Chintalapudi, C.K. Majumdar, J. Magn. Magn. Mater. 232, 71–83 (2001)CrossRefGoogle Scholar
  33. 33.
    C.Y. Tang, C.T. Wong, L.N. Zhang, M.T. Choy, T.W. Chow, K.C. Chan, T.M. Yue, Q. Chen, J. Alloys Compd. 557, 67–72 (2013)CrossRefGoogle Scholar
  34. 34.
    M. Milnera, J. Kürti, M. Hulman, H. Kuzmany, Phys. Rev. Lett. 84, 1324–1327 (2000)CrossRefGoogle Scholar
  35. 35.
    M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G. Souza Filho, R. Saito, Carbon 40, 2043–2061 (2002)CrossRefGoogle Scholar
  36. 36.
    H. Kuzmany, W. Plank, M. Hulman, C. Kramberger, A. Grüneis, T. Pichler, H. Peterlik, H. Kataura, Y. Achiba, Eur. Phys. J. B 22, 307–320 (2001)CrossRefGoogle Scholar
  37. 37.
    A.M. Rao, E. Richter, S.J. Bandow, B. Chase, P.C. Eklund, K.A. Williams, S. Fang, K.R. Subbaswamy, M. Menon, A. Thess, R.E. Smalley, G. Dresselhaus, M.S. Dresselhaus, Science 275, 187–191 (1997)CrossRefGoogle Scholar
  38. 38.
    A.E. Awadallah, A.A. Aboul-Enein, M.A. Azab, Y.K. Abdel-Monem, Fuller. Nanotub. Carbon Nanostruct. 25, 256–264 (2017)CrossRefGoogle Scholar
  39. 39.
    Y.C. Du, W.W. Liu, R. Qiang, Y. Wang, X.J. Han, J. Ma, P. Xu, ACS Appl. Mater. Interfaces 6, 12997–13006 (2014)CrossRefGoogle Scholar
  40. 40.
    F. Qin, C. Brosseau, J. Appl. Phys. 111, 061301 (2012)CrossRefGoogle Scholar
  41. 41.
    H. Wang, H.H. Guo, Y.Y. Dai, D.Y. Geng, Z. Han, D. Li, T. Yang, S. Ma, W. Liu, Z.D. Zhang, Appl. Phys. Lett. 101, 083116 (2012)CrossRefGoogle Scholar
  42. 42.
    B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang, M.M. Lu, H.B. Jin, X.Y. Fang, W.Z. Wang, J. Yuan, Carbon 65, 124–139 (2013)CrossRefGoogle Scholar
  43. 43.
    F. Nanni, P. Travaglia, M. Valentini, Compos. Sci. Technol. 69, 485–490 (2009)CrossRefGoogle Scholar
  44. 44.
    L.M. Yu, B. Li, L.M. Sheng, K. An, X.L. Zhao, J. Alloys Compd. 575, 123–127 (2013)CrossRefGoogle Scholar
  45. 45.
    X.L. Jia, J. Wang, X. Zhu, T.H. Wang, F. Yang, W.J. Dong, G. Wang, H.T. Yang, F. Wei, J. Alloys Compd. 697, 138–146 (2017)CrossRefGoogle Scholar
  46. 46.
    X. Sun, L.M. Sheng, J. Yang, K. An, L.M. .Yu, X.L. Zhao, J. Mater. Sci. Mater. Electron. 28, 12900–12908 (2017)CrossRefGoogle Scholar
  47. 47.
    L.G. Yan, J.B. Wang, X.H. Han, Y. Ren, Q.F. Liu, F.S. Li, Nanotechnology 21, 095708 (2010)CrossRefGoogle Scholar
  48. 48.
    A. Aharoni, J. Appl. Phys. 81, 7762–7764 (1991)CrossRefGoogle Scholar
  49. 49.
    Y.H. Chen, Z.H. Huang, M.M. Lu, W.Q. Cao, J. Yuan, D.Q. Zhang, M.S. Cao, J. Mater. Chem. A 3, 12621–12625 (2015)CrossRefGoogle Scholar
  50. 50.
    J.T. Feng, Y.C. Wang, Y.H. Hou, J.B. Li, L.C. Li, Ceram. Int. 42, 17814–17821 (2016)CrossRefGoogle Scholar
  51. 51.
    D.J. Bergman, Y. Imry, Phys. Rev. Lett. 39, 1222–1225 (1977)CrossRefGoogle Scholar
  52. 52.
    Z.F. Liu, G. Bai, Y. Huang, F.F. Li, Y.F. Ma, T.Y. Guo, X.B. He, X. Lin, H.J. Gao, Y.S. Chen, J. Phys. Chem. C 111, 13696–13700 (2007)CrossRefGoogle Scholar
  53. 53.
    P. Tripathi, C.R. Prakash Patel, A. Dixit, A.P. Singh, P. Kumar, M.A. Shaz et al., RSC Adv. 5, 19074–19081 (2015)CrossRefGoogle Scholar
  54. 54.
    Y.G. Xu, D.Y. Zhang, J. Cai, L.M. Yuan, W.Q. Zhang, J. Mater. Sci. Technol. 28, 34–40 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsShanghai UniversityShanghaiPeople’s Republic of China
  2. 2.Institute of Low-Dimensional Carbons and Device PhysicsShanghaiPeople’s Republic of China

Personalised recommendations