Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 23, pp 20216–20224 | Cite as

Correlation between the thickness and properties of the ethanol treated GO–PDMS based composite materials

  • Bikash Borah
  • Gunda Rajitha
  • Raj Kishora Dash
Article
  • 49 Downloads

Abstract

This paper presents a correlation between the size of the fabricated GO/PDMS (polydimethylsiloxane) composite material with the properties such as transmittance, index of refraction, band-gap and dielectric properties to understand the important role of the thickness-dependent properties for the future development of the smart materials and devices. For this purpose, three different thicknesses (500 µm, 1250 µm, and 2000 µm) GO/PDMS composites were fabricated with 1 wt% of ethanol-treated GO as a filler material, and optical properties such as optical transparency, band-gap, refractive index and dielectric constant were investigated. The experimental results indicated that band-gap, refractive index and dielectric constant are thickness-dependent and by controlling the thickness of the composites these properties can be tuned for development of future smart materials for different applications such as MEMS, sensors, electronic devices and biomedical applications. The possible reasons for obtained experimental results are also discussed.

References

  1. 1.
    Y. Lin, S. Liu, S. Chen, Y. Wei, X. Dong, L. Liu, A highly stretchable and sensitive strain sensor based on graphene–elastomer composites with a novel double-interconnected network. J. Mater. Chem. C 4, 6345 (2016)CrossRefGoogle Scholar
  2. 2.
    J.Y. Oh, D. Lee, G.H. Jun, H.J. Ryu, S.H. Hong, High conductivity and stretchability of 3D welded silver nanowire filled graphene aerogel hybrid composites. J. Mater. Chem. C 5, 8211 (2017)CrossRefGoogle Scholar
  3. 3.
    M. Amjadi, K.U. Kyung, I. Park, M. Sitti, Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26, 1678–1698 (2016)CrossRefGoogle Scholar
  4. 4.
    S. Zhao, J. Li, D. Cao, G. Zhang, J. Li, K. Li, Y. Yang, W. Wang, Y. Jin, R. Sun, C.P. Wong, Recent advancements in flexible and stretchable electrodes for electromechanical sensors: strategies, materials, and features. ACS Appl. Mater. Interfaces 9, 12147–12164 (2017)CrossRefGoogle Scholar
  5. 5.
    G. Rajitha, R.K. Dash, Optically transparent and high dielectric constant reduced graphene oxide (RGO)-PDMS based flexible composite for wearable and flexible sensors. J Sens. Actuators A 277, 26–34 (2018)CrossRefGoogle Scholar
  6. 6.
    N.J. Huang, J. Zang, G.D. Zhang, L.Z. Guan, S.N. Li, L. Zhao, L.C. Tang, Efficient interfacial interaction for improving mechanical properties of polydimethylsiloxane composites filled with low content of graphene oxide nanoribbons. RSC Adv. 7, 22045 (2017)CrossRefGoogle Scholar
  7. 7.
    D. Zhu, S.H. Wang, X. Zhou, Recent progress in fabrication and application of polydimethylsiloxane sponges. J. Mater. Chem. A 5, 16467–16497 (2017)CrossRefGoogle Scholar
  8. 8.
    L.W. Jang, J. Lee, M.E. Razu, E.C. Jensen, J. Kim, Fabrication of PDMS composite materials and nanostructures for biomedical nanosystems. IEEE Trans. Nanobiosci. 14(8)), 841–849 (2015)CrossRefGoogle Scholar
  9. 9.
    S. Wu, J. Zhang, R.B. Ladani, A.R. Ravindran, A.P. Mouritz, A.J. Kinloch, C.H. Wang, Novel electrically conductive porous PDMS/carbon nanofiber composites for deformable strain sensors and conductor. ACS Appl. Mater. Interfaces 9, 14207–14215 (2017)CrossRefGoogle Scholar
  10. 10.
    A. Mata, A.J. Fleischman, S. Roy, Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed. Microdevice 7(4), 281–293 (2005)CrossRefGoogle Scholar
  11. 11.
    H. Ha, J. Park, K.R. Ha, B.D. Freeman, C.J. Ellison, Synthesis and gas permeability of highly elastic poly(dimethylsiloxane)/graphene oxide composite elastomers using telechelic polymers. Polymer 93, 53–60 (2016)CrossRefGoogle Scholar
  12. 12.
    Y. Hu, T. Zhao, P. Zhu, Y. Zhu, X. Shuai, X. Liang, R. Sun, D.D. Lu, C.P. Wong, Low cost and highly conductive elastic composites for flexible and printable electronics. J. Mater. Chem. C 4, 5839–5848 (2016)CrossRefGoogle Scholar
  13. 13.
    S. Azhari, A.T. Yousef, H. Tanaka, A. Khajeh, N. Kuredemus, M.M. Bigdeli, M.N. Hamidon, Fabrication of piezoresistive based pressure sensor via purified andfunctionalized CNTs/PDMS composite: toward development of haptic sensors. Sens. Actuators A 266, 158–165 (2017)CrossRefGoogle Scholar
  14. 14.
    B. Wang, B.K. Lee, M.J. Kwak, D.W. Lee, Graphene/polydimethylsiloxane composite strain sensor. Rev. Sci. Instrum. 84, 105005 (2013)CrossRefGoogle Scholar
  15. 15.
    C. Acquarelli, L. Paliotta, A. Proietti, A. Tamburrano, G. De Bellis, M.S. Sarto, Electrical and electromechanical properties of stretchable multilayer-graphene/PDMS composite foils. IEEE Trans. Nanotechnol. 15(4), 687–695 (2016)CrossRefGoogle Scholar
  16. 16.
    Y.G. Seol, T.Q. Trung, O.J. Yoon, I.Y. Sohna, N.E. Lee, Composites of reduced graphene oxide nanosheets and conducting polymer for stretchable transparent conducting electrodes. J. Mater. Chem. 22, 23759 (2012)CrossRefGoogle Scholar
  17. 17.
    J. Ma, Y. Li, X. Yin, Y. Xu, J. Yue, J. Bao, T. Zhou, Poly(vinyl alcohol)/graphene oxide composites prepared by in situ polymerization with enhanced mechanical properties and water vapor barrier properties. RSC Adv. 6, 49448 (2016)CrossRefGoogle Scholar
  18. 18.
    Y. Hou, D. Wang, X.M. Zhang, H. Zhao, J.W. Zha, Z.M. Dang, The positive piezoresistive behavior of electrically conductive alkyl-functionalized graphene/polydimethylsilicone composites. J. Mater. Chem. C 1, 515 (2013)CrossRefGoogle Scholar
  19. 19.
    J.R. Potts, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, Graphene-based polymer composites. Polymer 52, 5–25 (2011)CrossRefGoogle Scholar
  20. 20.
    Z. Wang, J.K. Nelson, H. Hillborg, S. Zhao, L.S. Schadler, Graphene oxide filled composite with novel electrical and dielectric properties. Adv. Mater. 24, 3134–3137 (2012)CrossRefGoogle Scholar
  21. 21.
    K. Hu, D.D. Kulkarni, I. Choi, V.V. Tsukruk, Graphene-polymer composites for structuraland functional applications. Prog. Polym. Sci. 39, 1934–1972 (2014)CrossRefGoogle Scholar
  22. 22.
    B. Zhang, B. Li, S. Jiang, Electrical, elastic, and piezoresistive properties of composites of poly(dimethylsiloxane) and poly(phenylmethylsiloxane) functionalized graphene nanoplatelets. J. Electron. Mater. 46(10), 5737–5745 (2017)CrossRefGoogle Scholar
  23. 23.
    S. Khan, L. Lorenzelli, Recent advances of conductive composites in printed and flexible electronics. Smart Mater. Struct. 26, 083001 (2017)CrossRefGoogle Scholar
  24. 24.
    K. Natori, D. Otani, N. Sano, Thickness dependence of the effective dielectric constant in a thin film capacitor. Appl. Phys. Lett. 73(5), 632–634 (1998)CrossRefGoogle Scholar
  25. 25.
    X. Tang, J. Dai, X. Zhu, J. Lin, Q. Chang, D. Wu, W. Song, Y. Sun, Thickness-dependent dielectric, ferroelectric, and magnetodielectric properties of BiFeO3 thin films derived by chemical solution deposition. J. Am. Ceram. Soc. 95(2), 538–544 (2012)CrossRefGoogle Scholar
  26. 26.
    P. Thiruramanathan, S. Sankar, A. Marikani, D. Madhavan, S.K. Sharma, Thickness-dependent structural and dielectric properties of calcium copper titanate thin films produced by spin-coating method for microelectronic devices. J. Electron. Mater. 46(7), 4468–4477 (2017)CrossRefGoogle Scholar
  27. 27.
    J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S.T. Lee, J. Zhong, Z. Kang, Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347(6225), 970–974Google Scholar
  28. 28.
    M. Born, E. Wolf, Principles of Optics, 7th edn. (Cambridge University Press, Cambridge, 2005)Google Scholar
  29. 29.
    Y. Zhang, Y. Zhu, G. Lin, R.S. Ruoff, N. Hud, D.W. Schaefer, J.E. Mark, What factors control the mechanical properties of poly (dimethylsiloxane) reinforced with nanosheets of 3-aminopropyltriethoxysilane modified graphene oxide? Polymer 54, 3605–3611 (2013)CrossRefGoogle Scholar
  30. 30.
    L.M. Johnson, L. Gao, C.W. Shields, M. Smith, K. Efimenko, K.C.J. Genzer, G.P. López, Elastomeric microparticles for acoustic mediated bioseparations. J. Nanobiotechnol. 11(1), 22 (2013)CrossRefGoogle Scholar
  31. 31.
    M. Rezakazemi, A. Vatania, T. Mohammadi, Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS composite membranes. RSC Adv. 5, 82460–82470 (2015)CrossRefGoogle Scholar
  32. 32.
    G. Rajitha, M.B. Suresh, R.K. Dash, Synthesis of graphene oxide and reduced graphene oxide using volumetric method by a novel approach without NaNO2 or NaNO3. J. Appl. Nanosci. (2018).  https://doi.org/10.1007/s13204-018-0663-6 CrossRefGoogle Scholar
  33. 33.
    D. Babu, R.K. Dash, Influence of the source graphite size on the structure, and morphology of GO and RGO synthesized by Modified Hummer’s Method. Adv. Mater. Lett. 8(3), 315–321 (2017).  https://doi.org/10.5185/amlett.2017.1486 CrossRefGoogle Scholar
  34. 34.
    X. Fan, F. Khosravi, V. Rahneshin, M. Shanmugam, M. Loeian, J. Jasinski, R.W. Cohn, E. Terentjev, B. Panchapakesan, MoS2 actuators: reversible mechanical responses of MoS2-polymer composites to photons. Nanotechnology 26, 261001 (2015)CrossRefGoogle Scholar
  35. 35.
    D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010)CrossRefGoogle Scholar
  36. 36.
    R. Ghosh, S.K. Reddy, S. Sridhar, A. Misra, Temperature-dependent compressive behavior of graphene mediated three-dimensional cellular assembly. Carbon 96, 439–447 (2016)CrossRefGoogle Scholar
  37. 37.
    C. Tao, X. Zou, Z. Hu, H. Liu, J. Wang, Chemically functionalized graphene/polymer composites as light heating platform. Polym. Compos. 37(5), 1350–1358 (2016)CrossRefGoogle Scholar
  38. 38.
    J.A.N.T. Soares, M. Sardela (eds.), Practical Materials Characterization (Springer, New York, 2014).  https://doi.org/10.1007/978-1-4614-9281-8_2.CrossRefGoogle Scholar
  39. 39.
    I.S. Elashmawi, N.S. Alatawi, N.H. Elsayed, Preparation and characterization of polymer composites based on PVDF/PVC doped with graphene nanoparticles. Results Phys. 7, 636–640 (2017)CrossRefGoogle Scholar
  40. 40.
    M.A. Velasco-Soto, S.A. Pérez-García, J. Alvarez-Quintana, Y. Cao, L. Nyborg, L. Licea-Jiménez, Selective band gap manipulation of graphene oxide by its reduction with mild reagents. Carbon 93, 967–973 (2015)CrossRefGoogle Scholar
  41. 41.
    Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010)CrossRefGoogle Scholar
  42. 42.
    S. Song, Y. Zhai, Y. Zhang, Bioinspired graphene oxide/polymer composite paper with high strength, toughness, and dielectric constant. ACS Appl. Mater. Interfaces 8, 31264–31272 (2016)CrossRefGoogle Scholar
  43. 43.
    J. Yuan, A. Luna, W. Neri, C. Zakri, T. Schilling, A. Colin, P. Poulin, Graphene liquid crystal retarded percolation or new high-k materials. Nat. Commun. 6, 8700 (2015).  https://doi.org/10.1038/ncomms9700 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Advanced Materials and NEMS Lab., School of Engineering Sciences and TechnologyUniversity of HyderabadHyderabadIndia

Personalised recommendations