Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 23, pp 20162–20171 | Cite as

Near room temperature sensing of nitric oxide using SnO2/Ni-decorated natural cellulosic graphene nanohybrid film

  • S. Gupta Chatterjee
  • S. Dey
  • D. Samanta
  • S. Santra
  • S. Chatterjee
  • P. K. Guha
  • Amit K. ChakrabortyEmail author


In recent years, metal oxide nanoparticles and their composites with graphene have received significant research attention in toxic gas sensor applications. Herein, we demonstrate a novel approach to develop a sensor by combining SnO2 nanoparticles and Ni-decorated natural cellulosic graphene (Ni-NCG) derived from lotus petals to form SnO2/Ni-NCG nanohybrid. The morphology, microstructure and elemental composition of the nanohybrids were investigated by a number of techniques which confirmed presence of nanometer sized SnO2 particles having large surface area on sheets of few layered Ni-decorated NCG. Upto 15% response was observed when exposed to 40 ppm of NO with high reproducibility at temperature as low as 60 °C which is remarkable when compared to previously reported SnO2 based NO sensors operating at high temperatures (~ 200 °C or more). Further, the nanohybrid showed excellent selectivity to NO when tested against other gases. A mechanism have been proposed for the improved sensitivity at low temperature based on the improved surface area of SnO2 nanoparticles leading to larger adsorption of gas molecules combined with an improved conduction of charges provided by the Ni-decorated NCG network. The results show enormous potential for the SnO2/Ni-NCG nanohybrid film as near room temperature NO sensor.



We thank Prof. A K Raychaudhuri of SN Bose National Centre for Basic Sciences, Kolkata for some of the characterization facilities and fruitful discussions. We also thank Dr. A Singha of Bose Institute, Kolkata for the Raman analysis. AKC acknowledges the facilities of the MHRD (TEQIP-II) funded “Centre of Excellence in Advanced Materials” at NIT Durgapur.


  1. 1.
    R. Atkinson, Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 34, 2063–2101 (2000)CrossRefGoogle Scholar
  2. 2.
    D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, C. Zhou, Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 4, 1919–1124 (2004)CrossRefGoogle Scholar
  3. 3.
    L.S. Panchakarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, C.N.R. Rao. Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv. Mater. 21, 4726–4730 (2009)Google Scholar
  4. 4.
    C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10, 2088–2106 (2010)CrossRefGoogle Scholar
  5. 5.
    N. Barsan, U. Weimar, Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. J. Phys. Condens. Matter 15, R813–R839 (2003)CrossRefGoogle Scholar
  6. 6.
    A. Gurlo, Nanosensors: towards morphological control of gas sensing activity SnO2, In2O3, ZnO and WO3 case studies. Nanoscale 3, 154–165 (2011)CrossRefGoogle Scholar
  7. 7.
    G. Korotcenkov, Metal oxides for solid-state gas sensors: what determines our choice? Mater. Sci. Eng. B 139, 1–23 (2007)CrossRefGoogle Scholar
  8. 8.
    N. Barsan, D. Koziej, U. Weimar, Metal oxide-based gas sensor research: how to? Sens. Actuators B Chem. 121, 18–35 (2007)CrossRefGoogle Scholar
  9. 9.
    A. Lassesson, M. Schulze, J. van Lith, S.A. Brown, Tin oxide nanocluster hydrogen and ammonia sensors. Nanotechnology 19, 015502 (2008)CrossRefGoogle Scholar
  10. 10.
    X.M. Yin, C.C. Li, M. Zhang, Q.Y. Hao, S. Liu, Q.H. Li, L.B. Chen, T.H. Wang, SnO2 monolayer porous hollow spheres as a gas sensor. Nanotechnology 20, 455503 (2009)CrossRefGoogle Scholar
  11. 11.
    F. Gyger, M. Hubner, C. Feldmann, N. Barsan, U. Weimar, Nanoscale. SnO2 hollow spheres and their application as a gas-sensing material. Chem. Mater. 22, 4821–4827 (2010)CrossRefGoogle Scholar
  12. 12.
    G.K. Fan, Y. Wang, M. Hu, Z.Y. Luo, G. Li, Synthesis of flowerlike nano-SnO2 and a study of its gas sensing response. Meas. Sci. Technol. 22, 045203 (2011)CrossRefGoogle Scholar
  13. 13.
    F. Li, Y. Chen, J. Ma, Porous SnO2 nanoplates for highly sensitive NO detection. J. Mater. Chem. A 2, 7175–7178 (2014)CrossRefGoogle Scholar
  14. 14.
    T. Lv, Y. Chen, J. Ma, L. Chen, Hydrothermally processed SnO2 nanocrystals for ultrasensitive NO sensors. RSC Adv. 4, 22487–22490 (2014)CrossRefGoogle Scholar
  15. 15.
    S. Liu, Y. Zhang, B. Yu, Z. Wang, H. Zhao, N. Zhou, T. Zhang, Solvent-free infiltration method to prepare mesoporous SnO2 templated by SiO2 nanoparticles for ethanol sensing. Sens. Actuators B Chem. 210, 700–705 (2015)CrossRefGoogle Scholar
  16. 16.
    A. Sarkar, S. Bera, A.K. Chakraborty, NiS/rGO nanohybrid: an excellent counter electrode for dye sensitized solar cell. Sol. Energy Mater. Sol. Cells 182, 314–320 (2018)CrossRefGoogle Scholar
  17. 17.
    V. Meriga, V. Sreeramulu, S. Sundaresan, C. Cahill, V.R. Dhanak, A.K. Chakraborty, Optical, electrical and electrochemical properties of graphene based water soluble polyaniline composites. J. Appl. Polym. Sci. 132, 42766 (2015)CrossRefGoogle Scholar
  18. 18.
    F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson et al., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007)CrossRefGoogle Scholar
  19. 19.
    R. Ratinac, W. Yang, S.P. Ringer, F. Braet, Toward ubiquitous environmental gas sensors-capitalizing on the promise of graphene. Environ. Sci. Technol. 44, 1167–1176 (2010)CrossRefGoogle Scholar
  20. 20.
    R. Ghosh, S. Santra, S.K. Ray, P.K. Guha, Pt-functionalized reduced graphene oxide for excellent hydrogen sensing at room temperature. Appl. Phys. Lett. 107, 153102 (2015)CrossRefGoogle Scholar
  21. 21.
    P. Ranjan, P. Tiwary, A.K. Chakraborty, R. Mahapatra, A.D. Thakur, Graphene oxide based free-standing films for humidity and hydrogen peroxide sensing. J. Mater. Sci. Mater. Electron. 29, 15946–15956 (2018)CrossRefGoogle Scholar
  22. 22.
    S.G. Chatterjee, S. Chatterjee, A.K. Ray, A.K. Chakraborty, Graphene–metal oxide nanohybrids for toxic gas sensor: a review. Sens. Actuators B Chem. 221, 1170–1181 (2015)CrossRefGoogle Scholar
  23. 23.
    M.L. Yola, N. Atar, Z. Üstündağ, A.O. Solak, A novel voltammetric sensor based on p-aminothiophenol functionalized graphene oxide/gold nanoparticles for determining quercetin in the presence of ascorbic acid. J. Electroanal. Chem. 698, 9–16 (2013)CrossRefGoogle Scholar
  24. 24.
    M.L. Yola, T. Eren, N. Atar, A novel and sensitive electrochemical DNA biosensor based on Fe@Au nanoparticles decorated graphene oxide. Electrochim. Acta 125, 38–47 (2014)CrossRefGoogle Scholar
  25. 25.
    M.L. Yola, T. Eren, N. Atar, A sensitive molecular imprinted electrochemical sensor based on gold nanoparticles decorated graphene oxide: application to selective determination of tyrosine in milk. Sens. Actuators B Chem. 210, 149–157 (2015)CrossRefGoogle Scholar
  26. 26.
    M.L. Yola, N. Atar, T. Eren, H.K. Maleh, S. Wang, Sensitive and selective determination of aqueous triclosan based on gold nanoparticles on polyoxometalate/reduced graphene oxide nanohybrid. RSC Adv. 5, 65953–65962 (2015)CrossRefGoogle Scholar
  27. 27.
    M.L. Yola, N. Atar, Functionalized graphene quantum dots with bi-metallic nanoparticles composite: sensor application for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan. J. Electrochem. Soc. 163, B718–B725 (2016)CrossRefGoogle Scholar
  28. 28.
    M.L. Yola, T. Eren, N. Atar, H. Saral, I. Ermiş, Direct-methanol Fuel cell based on functionalized graphene oxide with mono-metallic and bi-metallic, nanoparticles: electrochemical performances of nanomaterials for methanol oxidation. Electroanalysis 28, 570–579 (2016)CrossRefGoogle Scholar
  29. 29.
    O. Akyıldırım, H. Medetalibeyoğlu, S. Manap, M. Beytur, F.S. Tokal, M.L. Yola, N. Atar, Electrochemical sensor based on graphene oxide/iron nanoparticles for the analysis of quercetin. Int. J. Electrochem. Sci. 10, 7743–7753 (2015)Google Scholar
  30. 30.
    S. Elçin, M.L. Yola, T. Eren, B. Girgin, N. Atar, Highly selective and sensitive voltammetric sensor based on ruthenium nanoparticle anchored Calix[4]amidocrown-5 functionalized reduced graphene oxide: simultaneous determination of quercetin, morin and rutin in grape wine. Electroanalysis, 28, 611–619 (2016)CrossRefGoogle Scholar
  31. 31.
    Ö Aktaş, Y.F. Kardaş, O. Akyıldırım, T. Eren, N. Atar, M.L. Yola, Sensitive voltammetric sensor based on polyoxometalate/reduced graphene oxide nanomaterial: application to the simultaneous determination of l-tyrosine and l-tryptophan. Sens. Actuators B Chem. 233, 47–54 (2016)CrossRefGoogle Scholar
  32. 32.
    V.K. Gupta, M.L. Yola, N. Atar, Z. Ustundağ, A.O. Solak, A novel sensitive Cu(II) and Cd(II) nanosensor platform: graphene oxide terminated p-aminophenyl modified glassy carbon surface. Electrochim. Acta 112, 541–548 (2013)CrossRefGoogle Scholar
  33. 33.
    Z.Y. Zhang, R.J. Zou, G.S. Song, L. Yu, Z.G. Chen, J.Q. Hu, Highly aligned SnO2 nanorods on graphene sheets for gas sensors. J. Mater. Chem. 21, 17360–17365 (2011)CrossRefGoogle Scholar
  34. 34.
    S. Mao, S. Cui, G. Lu, K. Yu, Z. Wen, J. Chen, Tuning gas-sensing properties of reduced graphene oxide using tin oxide nanocrystals. J. Mater. Chem. 22, 11009–11013 (2012)CrossRefGoogle Scholar
  35. 35.
    G. Neri, S.G. Leonardi, M. Latino, N. Donato, S. Baek, D.E. Conte, P.A. Russo, N. Pinna, Sensing behavior of SnO2/reduced graphene oxide nanocomposites toward NO2. Sens. Actuators B Chem. 179, 61–68 (2013)CrossRefGoogle Scholar
  36. 36.
    S. Cui, Z. Wen, E.C. Mattson, S. Mao, J. Chang, M. Weinert, C.J. Hirschmugl, M. Gajdardziska-Josifovskab, J. Chen, Indium-doped SnO2 nanoparticle–graphene nanohybrids: simple one-pot synthesis and their selective detection of NO2. J. Mater. Chem. A 1, 4462–4467 (2013)CrossRefGoogle Scholar
  37. 37.
    H. Zhang, J. Feng, T. Fei, S. Liu, T. Zhang, SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sens. Actuators B 190, 472–478 (2014)CrossRefGoogle Scholar
  38. 38.
    Z. Wang, C. Zhao, T. Han, Y. Zhang, S. Liu, T. Fei, G. Lu, T. Zhang, High-performance reduced graphene oxide-based room-temperature NO2 sensors: a combined surface modification of SnO2 nanoparticles and nitrogen doping approach. Sens. Actuators B Chem. 242, 269–279 (2017)CrossRefGoogle Scholar
  39. 39.
    H.W. Kim, H.G. Na, Y.J. Kwon, S.Y. Kang, M.S. Choi, J.H. Bang, P. Wu, S.S. Kim, Microwave-assisted synthesis of graphene–SnO2 nanocomposites and their applications in gas sensors. ACS Appl. Mater. Interface 9, 31667–31682 (2017)CrossRefGoogle Scholar
  40. 40.
    C.A. Zito, T.M. Perfecto, D.P. Volanti, Impact of reduced graphene oxide on the ethanol sensing performance of hollow SnO2 nanoparticles under humid atmosphere. Sens. Actuators B Chem. 244, 466–474 (2017)CrossRefGoogle Scholar
  41. 41.
    Y. Liu, Y. Jiao, Z. Zhang, F. Qu, A. Umar, X. Wu, Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. ACS Appl. Mater. Interface 6, 2174–2184 (2014)CrossRefGoogle Scholar
  42. 42.
    A. Birkel, F. Reuter, D. Koll, S. Frank, R. Branscheid, M. Panthöfer, E. Rentschler, W. Tremel, The interplay of crystallization kinetics and morphology during the formation of SnO2 nanorods: snapshots of the crystallization from fast microwave reactions. Cryst. Eng. Commun. 13, 2487 (2011)CrossRefGoogle Scholar
  43. 43.
    A.K. Ray, R.K. Sahu, V. Rajinikanth, H. Bapari, M. Ghosh, P. Paul, Preparation and characterization of graphene and Ni-decorated graphene using flowerpetals as the precursor material. Carbon 50, 4123–4129 (2012)CrossRefGoogle Scholar
  44. 44.
    Z. Jin, Q. Chu, W. Xu, H. Cai, W. Ji, G. Wang, B. Lin, X. Zhang, All-fiber Raman biosensor by combining reflection and transmission mode. IEEE Photon. Technol. Lett. 30, 387–390 (2018)CrossRefGoogle Scholar
  45. 45.
    S. Liu, B. Yu, H. Zhang, T. Fei, T. Zhang, Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sens. Actuators B Chem. 202, 272–278 (2014)CrossRefGoogle Scholar
  46. 46.
    X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, L.A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18, 2325–2329 (2006)CrossRefGoogle Scholar
  47. 47.
    R. Wang, C. Xu, X. Bi, Y. Ding, Nanoporous surface alloys as highly active and durable oxygen reduction reaction electrocatalysts. Energy Environ. Sci. 5, 5281 (2012)CrossRefGoogle Scholar
  48. 48.
    C.T. Lee, H.Y. Lee, Y.S. Chiu, Performance Improvement of nitrogen oxide gas sensors using Au catalytic metal on SnO2/WO3. IEEE Sens. J. 16, 7581–7585 (2016)Google Scholar
  49. 49.
    H.-Y. Li, Z.-X. Cai, J.-C. Ding, X. Guo, Gigantically enhanced NO sensing properties of WO3/SnO2 double layer sensors with Pd decoration. Sens. Actuators B Chem. 220, 398–405 (2015)CrossRefGoogle Scholar
  50. 50.
    L. Wang, Y. Chen, J. Ma, L. Chen, Z. Xu, T. Wang, Hierarchical SnO2 nanospheres: bio-inspired mineralization, vulcanization, oxidation techniques, and the application for NO sensors. Sci. Rep. 3, 3500-1–3500-6 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and Centre of Excellence in Advanced MaterialsNational Institute of TechnologyDurgapurIndia
  2. 2.Department of Electronics and Electrical Communication EngineeringIndian Institute of TechnologyKharagpurIndia
  3. 3.Center for Materials Science and NanotechnologySikkim Manipal Institute of TechnologySikkimIndia
  4. 4.Department of PhysicsIndian Institute of TechnologyKharagpurIndia

Personalised recommendations