Advertisement

Magnetocaloric effect and critical properties in La0.85Li0.15MnO3

  • Li-an Han
  • Shao-fang Pang
  • Hua-ze Zhu
  • Peng-li Zhang
  • Jing Yang
  • Tao Zhang
Article
  • 9 Downloads

Abstract

The manganite La0.85Li0.15MnO3 (LLMO) was synthesized by standard ceramic preparation routes, its magnetocaloric effect and critical phenomenon have been studied by measurements of dc-magnetization. The sample is of single phase with a rhombohedral structure confirmed by the X-ray diffraction refinement. M–T data reveal that the LLMO shows a second-order magnetic transition with a TC of 235 K. Maximum values of magnetic entropy change (− ∆SMmax= 5.32 J K−1 Kg−1) and relative cooling power (RCP = 320.3 J kg−1) have been observed when the magnetic field change is up to 5 T. The LLMO compound with excellent magnetocaloric effect is expected to have effective applications in sub-room temperature range. In addition, the critical behavior around its TC is thoroughly analyzed using the field dependence of the magnetic entropy change. The determined values of critical exponents (β = 0.507, γ = 1.045, and δ = 2.982) are fairly close to the theoretical values of the mean field model (β = 0.5, γ = 1.0, and δ = 3.0), indicating the presence of long-range ferromagnetic ordering in this system. The validity of the obtained exponents is confirmed by the scaling theory.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under grant No. 61201088 and 11605133, the Scientific Research Program Funded by ShaanXi Provincial Education Commission (Program no. 2010JK674), and Foundation Industrial Public Relation Project of Shaanxi Technology Committee (2016GY-041).

References

  1. 1.
    A.P. Ramirez, J. Phys. Condens. Matter. 9, 8171 (1997)CrossRefGoogle Scholar
  2. 2.
    Y. Tokura, Colossal Magnetoresistive Oxides (Gordon and Breach Science, New York, 2000)Google Scholar
  3. 3.
    J.M.D. Coey, M. Viret, S. Von Molnar, Adv. Phys. 48, 167 (1999)CrossRefGoogle Scholar
  4. 4.
    S.L. Ye, W.H. Song, J.M. Dai, K.Y. Wang, S.G. Wang, J.J. Du, Y.P. Sun, J. Fang, J.L. Chen, B.J. Gao, J. Appl. Phys. 90, 2943 (2001)CrossRefGoogle Scholar
  5. 5.
    T.K. Soma Das, Dey, Solid State Commun. 134, 837 (2005)CrossRefGoogle Scholar
  6. 6.
    S. Ravi, M. Kar, Phys. B 348, 169 (2004)CrossRefGoogle Scholar
  7. 7.
    C. Zener, Phys. Rev. 82, 403 (1951)CrossRefGoogle Scholar
  8. 8.
    A.J. Mills, P.B. Littlewood, B.I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995)CrossRefGoogle Scholar
  9. 9.
    Z. Juan, L. Lirong, W. Gui, Adv. Powder Technol. 22, 68 (2011)CrossRefGoogle Scholar
  10. 10.
    S. Das, T.K. Dey, J. Phys. D Appl. Phys. 40, 1855 (2007)CrossRefGoogle Scholar
  11. 11.
    I.K. Kamilov, A.G. Gamzatov, A.M. Aliev, A.B. Batdalov, A.A. Aliverdiev, S.B. Abdulvagidov, O.V. Melnikov, O.Y. Gorbenko, A.R. Kaul, J. Phys. D Appl. Phys. 40, 4413 (2007)CrossRefGoogle Scholar
  12. 12.
    A.M. Aliev, A.G. Gamzatov, A.B. Batdalov, A.S. Mankevich, I.E. Korsakov, Phys. B 406, 885 (2011)CrossRefGoogle Scholar
  13. 13.
    S.N. Barilo, G.L. Bychkov, V.I. Gatalskaya, L.A. Kurochkin, V.P. Sokol, H. Szymczak, R. Szymczak, M. Baranless, Low Temp. phys. 27, 288 (2001)CrossRefGoogle Scholar
  14. 14.
    X.L. Wang, S.J. Kennedy, P. Gehringer, W. Lang, H.K. Liu, S.X. Dou, J. Appl. Phys. 83, 7177 (1998)CrossRefGoogle Scholar
  15. 15.
    A.M. Ahmed, G. Papavassiliou, H.F. Mohamed, E.M.M. Ibrahim, J. Magn. Magn. Mater. 392, 27 (2015)CrossRefGoogle Scholar
  16. 16.
    H.M. Rietveld, J. Appl. Cryst. 2, 65 (1969)CrossRefGoogle Scholar
  17. 17.
    S.K. Banerjee, Phys. Lett. 12, 16 (1964)CrossRefGoogle Scholar
  18. 18.
    K.A. Gschneidner, H. Takeya Jr., J.O. Moorman, V.K. Pecharsky, Appt. Phys. Lett. 64, 253 (1994)CrossRefGoogle Scholar
  19. 19.
    M.H. Phan, S.C. Yu, N.H. Hur, Y.H. Yeong, J. Appl. Phys. 96, 1154 (2004)CrossRefGoogle Scholar
  20. 20.
    E. Bruck, J. Phys. D: Appl. Phys 38, R381 (2005)CrossRefGoogle Scholar
  21. 21.
    M.H. Phan, S.C. Yu, Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325 (2007)CrossRefGoogle Scholar
  22. 22.
    J. Lyubina, J. Phys. D Appl. Phys. 50, 053002 (2017)CrossRefGoogle Scholar
  23. 23.
    D. Hou, C. Yue, Y. Bai, Q. Liu, X. Zhao, G. Tang, Solid State Commun. 140, 459 (2006)CrossRefGoogle Scholar
  24. 24.
    S. Das, T.K. Dey, J. Alloys Compd. 440, 30 (2007)CrossRefGoogle Scholar
  25. 25.
    Y. Regaieg, M. Koubaaa, W. Cheikhrouhou Koubaaa, A. Cheikhrouhou, L. Sicard, S. Ammar-Merah, F. Herbst, Mater. Chem. Phys. 132, 839 (2012)CrossRefGoogle Scholar
  26. 26.
    J.C. Debnath, R. Zeng, J.H. Kim, S.X. Dou, J. Alloys Compd. 509, 3699 (2011)CrossRefGoogle Scholar
  27. 27.
    W. Jian, J. Alloys Compd. 476, 859 (2009)CrossRefGoogle Scholar
  28. 28.
    A.H. EI-Sayed, M.A. Hamad, J. Supercond. Nov. Magn. (2018).  https://doi.org/10.1007/s10948-018-4699-3 CrossRefGoogle Scholar
  29. 29.
    V.K. Pecharsky, K.A. Gschneidner Jr., Phys. Rev. Lett. 78, 4494 (1997)CrossRefGoogle Scholar
  30. 30.
    M. Sahana, U.K. Rössler, N. Ghosh, S. Elizabeth, H.L. Bhat, K. Dörr, D. Eckert, M. Wolf, K.H. Müller, Phys. Rev. B 68, 144408 (2003)CrossRefGoogle Scholar
  31. 31.
    T.L. Phan, Y.D. Zhang, P. Zhang, T.D. Thanh, S.C. Yu, J. Appl. Phys. 112, 093906 (2012)CrossRefGoogle Scholar
  32. 32.
    J. Fan, L. Pi, L. Zhang, T. Wei, L. Ling, B. Hong, Y. Shi, W. Zhang, D. Lu, Y. Zhang, Appl. Phys. Lett. 98, 072508 (2011)CrossRefGoogle Scholar
  33. 33.
    M.H. Phan, V. Franco, A. Chaturvedi, S. Stefanoski, G.S. Nolas, H. Srikanth, Phys. Rev. B 84, 054436 (2011)CrossRefGoogle Scholar
  34. 34.
    L. Xu, J. Fan, W. Sun, Y. Zhu, D. Hu, J. Liu, Y. Ji, D. Shi, H. Yang, Appl. Phys. Lett. 111, 052406 (2017)CrossRefGoogle Scholar
  35. 35.
    L. Xu, J. Fan, W. Tong, D. Hu, L. Zhang, L. Ling, L. Pi, Y. Zhang, H. Yang, J. Mater. Sci. 53, 323 (2018)CrossRefGoogle Scholar
  36. 36.
    L. Xu, H. Han, J.D. Shi, D. Hu, H. Du, L.Y. Zhang, H. Yang, Euro. Phys. Lett. 117, 47004 (2017)CrossRefGoogle Scholar
  37. 37.
    H. Oesterreicher, F.T. Parker, J. Appl. Phys. 55, 4334 (1984)CrossRefGoogle Scholar
  38. 38.
    V. Franco, J.S. Blázquez, A. Conde, Appl. Phys. Lett. 89, 222512 (2006)CrossRefGoogle Scholar
  39. 39.
    B. Widom, J. Chem. Phys. 43, 3898 (1965)CrossRefGoogle Scholar
  40. 40.
    Za. Mohamed, E. Tka, J. Dhahri, E.K. Hlil, J. Alloy. Compd. 688, 1260 (2016)CrossRefGoogle Scholar
  41. 41.
    A.K. Pramanik, A. Banerjee, Phys. Rev. B 79, 214426 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Li-an Han
    • 1
  • Shao-fang Pang
    • 1
  • Hua-ze Zhu
    • 1
  • Peng-li Zhang
    • 1
  • Jing Yang
    • 1
  • Tao Zhang
    • 1
  1. 1.Department of Applied PhysicsXi’an University of Science and TechnologyXi’anPeople’s Republic of China

Personalised recommendations