Advertisement

Fabrication of CdSe quantum dots @ nickel hexacyanoferrate core–shell nanoparticles modified electrode for the electrocatalytic oxidation of hydrazine

  • A. Kalaivani
  • S. Sriman Narayanan
Article

Abstract

We have reported an efficient method to immobilize the electroactive nickel hexacyanoferrate (NiHCF) on CdSe quantum dots (QDs). CdSe QDs @ NiHCF core–shell nanoparticles (NPs) were successfully synthesized and characterized using Fourier transform infrared spectroscopy and transmission electron microscopy. A simple, stable and reproducible CdSe QDs @ NiHCF NPs modified electrode has been constructed as a sensing platform for the electrochemical determination of hydrazine. The electrochemical behavior of CdSe QDs @ NiHCF NPs modified electrode was studied by cyclic voltammetry and electrochemical impedance spectroscopy. Under optimal condition the modified electrode exhibits well defined redox peaks at a formal potential of 0.31 V which corresponds to the redox reaction of hexacyanoferrate (II/III) of NiHCF. The sensor showed an enhanced electrocatalytic activity towards the oxidative determination of hydrazine in the concentration range of 1.6–1300 µM with the detection limit of 0.5 µM. The sensor has been tested for analysis of real samples, which makes it useful in practical area of environmental applications.

Notes

Acknowledgements

The authors acknowledge the financial assistance from University of Madras through National Centre for Nanoscience and Nanotechnology.

References

  1. 1.
    A. Chen, S. Chaterjee, Chem. Soc. Rev. 42, 5425 (2013)CrossRefGoogle Scholar
  2. 2.
    W. Zhao, J.J. Xu, H.Y. Chen, Electroanalysis 18, 1737 (2006)CrossRefGoogle Scholar
  3. 3.
    B.Y. Fu, P. Li, Q. Xie, X. Xu, L. Lei, C. Chen, C. Zou, W. Deng, S. Yao, Adv. Funct. Mater. 19, 1784 (2009)CrossRefGoogle Scholar
  4. 4.
    J. Wang, Microchim. Acta 177, 245 (2012)CrossRefGoogle Scholar
  5. 5.
    D. Hernandez-Santos, M.B. Gonzalez-Garcia, A.C. Garcia, Electroanalysis 14, 1225 (2002)CrossRefGoogle Scholar
  6. 6.
    C. Priya, G. Sivasankari, S.S. Narayanan, Colloids Surf. B Biointerfaces 97, 90 (2012)CrossRefGoogle Scholar
  7. 7.
    S.A. Gopalan, G. Anantha-Iyengar, K. Shin-Won, K. Shanmugasundaram, L. Kwang-Pill, Sci. Adv. Mater. 6, 1356 (2014)CrossRefGoogle Scholar
  8. 8.
    A. Safavi, N. Maleki, F. Tajabadi, E. Farjami, Electrochem. Commun. 9, 1963 (2007)CrossRefGoogle Scholar
  9. 9.
    D.R.S. Jeykumari, S.S. Narayanan, J. Nanosci. Nanotechnol. 9, 5411 (2008)CrossRefGoogle Scholar
  10. 10.
    M. Roushani, M. Shamsipur, H.R. Rajabi, J. Electroanal. Chem. 712, 19 (2014)CrossRefGoogle Scholar
  11. 11.
    H. Yin, Y. Zhou, S. Ai, Q. Chen, X. Zhu, X. Liu, L. Zhu, J. Hazard. Mater. 174, 236 (2010)CrossRefGoogle Scholar
  12. 12.
    A. Kalaivani, S.S. Narayanan, J. Nanosci. Nanotechnol. 15, 4697–4705 (2015)CrossRefGoogle Scholar
  13. 13.
    C. Zhang, G. Wang, Y. Ji, M. Liu, Y. Feng, Z. Zhang, B. Fang, Sens. Actuators B 150, 247 (2010)CrossRefGoogle Scholar
  14. 14.
    J. Li, H. Xie, L. Chen, Sens. Actuators B 153, 239 (2011)CrossRefGoogle Scholar
  15. 15.
    H. Zhu, G.C. Zhao, Microchim. Acta 165, 329 (2009)CrossRefGoogle Scholar
  16. 16.
    Y. Li, M. Han, H. Bai, Y. Wu, Z. Dai, J. Bao, Electrochim. Acta 56, 7058 (2011)CrossRefGoogle Scholar
  17. 17.
    Q. Liu, X. Lu, J. Li, X. Yao, Biosens. Bioelectron. 22, 3203 (2007)CrossRefGoogle Scholar
  18. 18.
    N.R. de Tacconi, K. Rajeshwar, Chem. Mater. 15, 3046 (2003)CrossRefGoogle Scholar
  19. 19.
    J.J. Garcia-Jareno, J.J. Navarro, A.F. Roig, H. Scholl, F. Vicente, Electrochim. Acta 40, 1113 (1995)CrossRefGoogle Scholar
  20. 20.
    M.A. Malik, K. Miecznikowski, P.J. Kulesza, Electrochim. Acta 45, 3777 (2000)CrossRefGoogle Scholar
  21. 21.
    R.S. Babu, P. Prabhu, S.S. Narayanan, Colloids Surf. B Biointerfaces 88, 755 (2011)CrossRefGoogle Scholar
  22. 22.
    X. Bai, G. Chen, K.K. Shiu, Electrochim. Acta 89, 454 (2013)CrossRefGoogle Scholar
  23. 23.
    M.A. Maier, R. Suresh Babu, D.M. Sampaio, A.L.F. de Barros, J. Mater. Sci. Mater. Electron. 28, 17405 (2017)CrossRefGoogle Scholar
  24. 24.
    R.S. Babu, A.L.F. de Barros, M.A. Maier, D.M. Sampaio, J. Balamurugan, J.H. Lee, Compos. Part B Eng. 143, 141 (2018)CrossRefGoogle Scholar
  25. 25.
    N. Sattarahmady, H. Heli, S.E. Moradi, Sens. Actuators B 177, 1098 (2013)CrossRefGoogle Scholar
  26. 26.
    J. Zhang, J. Li, F. Yang, B. Zhang, X. Yang, Sens. Actuators B 143, 373 (2009)CrossRefGoogle Scholar
  27. 27.
    F. Li, C. Tang, S. Liu, G. Ma, Electrochim. Acta 55, 838 (2010)CrossRefGoogle Scholar
  28. 28.
    K. Yamada, K. Yasuda, N. Fujiwara, Z. Siroma, H. Tanaka, Y. Miyazaki, T. Kobayashi, Electrochem. Commun. 5, 892 (2003)CrossRefGoogle Scholar
  29. 29.
    S.M. Golabi, H.R. Zare, J. Electroanal. Chem. 465, 168 (1999)CrossRefGoogle Scholar
  30. 30.
    N. Nasirizadeh, H.R. Zare, A.R. Fakhari, H. Ahmar, M.R. Ahmadzadeh, A. Naeimi, J. Solid State Electrochem. 15, 2683 (2011)CrossRefGoogle Scholar
  31. 31.
    X.W. Zheng, Z.J. Zhang, Z.H. Guo, Q. Wang, Analyst 127, 1375 (2002)CrossRefGoogle Scholar
  32. 32.
    W. Siangproh, O. Chailapakul, R. Laocharoensuk, J. Wang, Talanta 67, 903 (2005)CrossRefGoogle Scholar
  33. 33.
    Y.Y. Liu, I. Schmeltz, D. Hoffmann, Anal. Chem. 46, 885 (1974)CrossRefGoogle Scholar
  34. 34.
    A. Salimi, L. Miranzadeh, R. Hallaj, Talanta 75, 147 (2008)Google Scholar
  35. 35.
    S.K. Mehta, A. Khushboo, Umar, Talanta 85, 2411 (2011)CrossRefGoogle Scholar
  36. 36.
    H. Ahmar, S. Keshipour, H. Hosseini, A.R. Fakhari, A. Shaabani, A. Bagheri, J. Electroanal. Chem. 690, 96 (2013)CrossRefGoogle Scholar
  37. 37.
    S.O. Oluwafemi, N. Revaprasadu, A.J. Ramirez, J. Cryst. Growth 310, 3230 (2008)CrossRefGoogle Scholar
  38. 38.
    H. Heli, S. Majdi, N. Sattarahmady, Mater. Res. Bull. 45, 850 (2010)CrossRefGoogle Scholar
  39. 39.
    M. Yang, Y. Yang, F. Qu, Y. Lu, G. Shen, R. Yu, Anal. Chim. Acta 571, 211 (2006)CrossRefGoogle Scholar
  40. 40.
    Q. Wang, X. Yu, G. Zhan, C. Li, Biosens. Bioelectron. 54, 311 (2014)CrossRefGoogle Scholar
  41. 41.
    D. Ellis, M. Eckhoff, V.D. Neff, J. Phys. Chem. 85, 1225 (1981)CrossRefGoogle Scholar
  42. 42.
    E. Laviron, J. Electroanal. Chem. 100, 263 (1979)CrossRefGoogle Scholar
  43. 43.
    R.S. Babu, P. Prabhu, S.S. Narayanan, J. Solid State Electrochem. 20, 1575 (2016)CrossRefGoogle Scholar
  44. 44.
    D. Jayasri, S.S. Narayanan, J. Hazard. Mater. 144, 348 (2007)CrossRefGoogle Scholar
  45. 45.
    D.R. Shankaran, S.S. Narayanan, Russ. J. Electrochem. 38, 987 (2002)CrossRefGoogle Scholar
  46. 46.
    U. Scharf, E.W. Grabner, Electrochim. Acta 41, 233 (1996)CrossRefGoogle Scholar
  47. 47.
    S.J.R. Prabakar, S.S. Narayanan, J. Electroanal. Chem. 617, 111 (2008)CrossRefGoogle Scholar
  48. 48.
    D. Ravi Shankaran, S.S. Narayanan, Russ. J. Electrochem. 37, 1149 (2001)CrossRefGoogle Scholar
  49. 49.
    A. Abbaspour, A. Khajehzadeh, A. Ghaffarinejad, J. Electroanal. Chem. 631, 52 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Analytical Chemistry, School of Chemical SciencesUniversity of Madras, Guindy CampusChennaiIndia
  2. 2.Department of ChemistrySaveetha Engineering CollegeChennaiIndia

Personalised recommendations