Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 23, pp 20141–20145 | Cite as

On the frequency–voltage dependent electrical and dielectric profiles of the Al/(Zn-PVA)/p-Si structures

  • Hüseyin TecimerEmail author


The frequency effect on the dielectric features of Zn doped polymer interlayered metal–semiconductor (MS) structure has been investigated by admittance measuring methods. As a function of frequency and voltage, the parameters such as dielectric constant (ε′), dielectric loss (ε″), dielectric loss tangent (tanδ), and ac electrical conductivity (σac) have been calculated. The values of ε′, ε″ and tanδ were decreased with frequency increment for each applied bias. The decrement at ε′ and ε″ by frequency increase indicated that the interfacial dipoles have not enough time to orient themselves in the alternate field direction. While the M′ value increase with frequency and reach a maximum, M″ displays a peak where its position shifts to higher frequency with increasing applied bias. The ln(σac) vs ln(ω) plot of the structure at 6 V has two linear regions with different slopes. Such behavior of ln(σac) vs ln(ω) plot reveals that there are two distinct conduction mechanisms in the Al/(0.07Zn-doped PVA)/p-Si MPS type SBDs at room temperature.


  1. 1.
    K. Kano, Semiconductor Devices (Prentice-Hall, Upper Saddle River, 1998)Google Scholar
  2. 2.
    S.O. Tan, Comparison of graphene and zinc dopant materials for organic polymer interfacial layer between metal semiconductor structure. IEEE Trans. Electron Devices 64(12), 5121–5127 (2017). CrossRefGoogle Scholar
  3. 3.
    S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)Google Scholar
  4. 4.
    H. Tecimer, S.O. Tan, Ş. Altındal, Frequency-dependent admittance analysis of the metal-semiconductor structure with an interlayer of Zn-doped organic polymer nanocomposites. IEEE Trans. Electron Devices 65(1), 231–236 (2018). CrossRefGoogle Scholar
  5. 5.
    Ş. Altındal, H. Uslu, The origin of anomalous peak and negative capacitance in the forward bias capacitance-voltage characteristics of Au/PVA/n-Si structures. J. Appl. Phys. 109, 074503 (2011) CrossRefGoogle Scholar
  6. 6.
    N. Baraz, İ. Yücedağ, Y. Azizian, G. Ersöz, İ. Orak, Ş Altındal, B. Akbari, H. Akbari, Electric and dielectric properties of Au/ZnS-PVA/n-Si (MPS) structures in the frequency range of 10–200 kHz. J. Electron. Mater. 46, 4276–4286 (2017). CrossRefGoogle Scholar
  7. 7.
    A.B. Ulusan, S.A. Yerişkin, A. Tataroğlu, Y. Azizian, Electrical and impedance properties of MPS structure based on (Cu2O–CuO–PVA) interfacial layer. J. Mater. Sci. Mater. Electron. (2018). CrossRefGoogle Scholar
  8. 8.
    A. Kaya, S. Alialy, S. Demirezen, M. Balbaşı, S.A. Yerişkin, A. Aytimur, The investigation of dielectric properties and ac conductivity of Au/GO-doped PrBaCoO nanoceramic/n-Si capacitors using impedance spectroscopy method. Ceram. Int. 42, 3322–3329 (2016). CrossRefGoogle Scholar
  9. 9.
    S.O. Tan, H.U. Tecimer, O. Çiçek, Comparative investigation on the effects of organic and inorganic interlayers in Au/n-GaAs Schottky diodes. IEEE Trans. Electron Devices 64(3), 984–990 (2017). CrossRefGoogle Scholar
  10. 10.
    Ç. Bilkan, Ş. Altındal, Investigation of CV characteristics that provides linearity in a large reverse bias region and the effects. J. Alloy. Compd. 708, 464–469 (2017). CrossRefGoogle Scholar
  11. 11.
    Y.-L. Lee, W.-C. Liu, Enhanced light extraction of GaN-based light-emitting diodes with a hybrid structure incorporating microhole arrays and textured sidewalls. IEEE Trans. Electron Devices (2018). CrossRefGoogle Scholar
  12. 12.
    G. Ersöz, İ. Yücedağ, Y. Azizian-Kalandaragh, İ. Orak, Ş. Altındal, Investigation of electrical characteristics in Al/CdS-PVA/p-Si (MPS) structures using impedance spectroscopy method. IEEE Trans. Electron Devices 63, 2948–2955 (2016). CrossRefGoogle Scholar
  13. 13.
    A. Kaya, H. Tecimer, Ö Vural, I.H. Taşdemir, Ş. Altındal, Capacitance/conductance–voltage–frequency characteristics of Au/PVC + TCNQ/p-Si structures in wide frequency range. IEEE Trans. Electron Devices 61, 584–590 (2014) CrossRefGoogle Scholar
  14. 14.
    H.U. Tecimer, M.A. Alper, H. Tecimer, S.O. Tan, Ş Altındal, Integration of Zn-doped organic polymer nanocomposites between metal semiconductor structure to reveal the electrical qualifications of the diodes. Polym. Bull. (2018). (online) CrossRefGoogle Scholar
  15. 15.
    S. Altındal Yerişkin, M. Balbaşı, A. Tataroğlu, Frequency and voltage dependence of dielectric properties, complex electric modulus, and electrical conductivity in Au/%7 graphane doped-PVA/n-Si (MPS) structures. J. Appl. Poly. Sci. (2016). CrossRefGoogle Scholar
  16. 16.
    İ. Taşçıoğlu, Ö. Tüzün Özmen, H.M. Şağban, E. Yağlıoğlu, Ş. Altındal, Frequency dependent electrical and dielectric properties of Au/P3HT:PCBM:F4-TCNQ/n-Si Schottky barrier diode. J. Mater. Sci. Mater. Electron. 46, 2379–2386 (2017). CrossRefGoogle Scholar
  17. 17.
    S. Altındal Yerişkin, M. Balbaşı, İ. Orak, Frequency dependent electrical characteristics and origin of anomalous capacitance–voltage (CV) peak in Au/(graphane doped-PVA)/n-Si capacitors. J. Mater. Sci. Mater. Electron. 28, 7819–7826 (2017). CrossRefGoogle Scholar
  18. 18.
    A.S. Roy, S. Gupta, S. Sindhu, A. Parveen, P.C. Ramamurthy, Dielectric properties of novel PVA/ZnO hybrid nanocomposite films. Compos. B Eng. 47, 314–319 (2013). CrossRefGoogle Scholar
  19. 19.
    H.E. Lapa, A. Kökce, M. Al-Dharob, İ. Orak, A.F. Özdemir, Ş. Altındal, Interfacial layer thickness dependent electrical characteristics of Au/(Zn-doped PVA)/n-4H-SiC (MPS) structures at room temperature. Eur. Phys. J. Appl. Phys. 80, 10101 (2017). CrossRefGoogle Scholar
  20. 20.
    Ç. Bilkan, Y.A. Kalandaragh, Ş. Altındal, R.S. Havigh, Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co3O4-PVA/p-Si structures. Phys. B 500, 154–160 (2016). CrossRefGoogle Scholar
  21. 21.
    A.G. El-Shamy, W.M. Attia, K.M. Abd El Kader, Enhancement of the conductivity and dielectric properties of PVA/Ag nanocomposite films using γ irradiation in Al/CdS-PVA/p-Si (MPS) structures using impedance spectroscopy method. Mater. Chem. Phys. 191, 225–229 (2017). CrossRefGoogle Scholar
  22. 22.
    H. Tecimer, A. Türüt, H. Uslu, Ş. Altındal, İ. Uslu, Temperature dependent current-transport mechanism in Au/(Zn-doped)PVA/n-GaAs Schottky barrier diodes (SBDs). Sens. Actuators A 199, 194–201 (2013). CrossRefGoogle Scholar
  23. 23.
    V.V. Daniel, Dielectric Relaxation (Academic Press, London, 1967)Google Scholar
  24. 24.
    C.P. Symth, Dielectric Behaviour and Structure (McGraw-Hill, New York, 1955)Google Scholar
  25. 25.
    P. Pissis, A. Kyritsis, Electrical conductivity studies in hydrogels. Solid State Ion. 97, 105–113 (1997). 105CrossRefGoogle Scholar
  26. 26.
    M. Popescu, I. Bunget, Physics of Solid Dielectrics (Elsevier, Amsterdam, 1984)Google Scholar
  27. 27.
    A. Chelkowski, Dielectric Physics (Elsevier, Amsterdam, 1980)Google Scholar
  28. 28.
    S.K. Tripathi, M. Sharma, Analysis of the forward and reverse bias IV and CV characteristics on Al/PVA:n-PbSe polymer nanocomposites Schottky diode. J. Appl. Phys. 111, 074513 (2012). CrossRefGoogle Scholar
  29. 29.
    A. Tataroğlu, Electrical and dielectric properties of MIS Schottky diodes at low temperatures. Microelectron. Eng. 83, 2551–2557 (2006). CrossRefGoogle Scholar
  30. 30.
    K. Prabakar, S.K. Narayandass, D. Mangalaraj, Dielectric properties of Cd0.6Zn0.4Te thin films. Phys. Status Solidi 199, 507–514 (2003). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechatronics EngineeringKarabük UniversityKarabükTurkey

Personalised recommendations