Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 23, pp 20113–20121 | Cite as

Physical properties of Ag/Ca doped Lantanium manganite

  • Nadia AssoudiEmail author
  • W. Hzez
  • R. Dhahri
  • I. Walha
  • H. Rahmouni
  • K. Khirouni
  • E. Dhahri


La0.6Ca0.3Ag0.1MnO3 system has been synthesized using the cheap solid–solid process. Structural analysis indicates that the sample exhibits a single phase of intragranular. Electrical and dielectric data, over a wide temperature range and frequencies have been recorded with impedance spectroscopy. We visualize the conductivity, whose activation energy is low, as a successive hopping of electrons as polaron does. Further, the conductivity is governed by the small polaron hopping model at higher temperature region while it fits well with the variable range hopping model at a lower temperature range. Dielectric data has been represented in different alternative complex formalisms, from which complementary information has been extracted. The complex impedance diagram suggests the contribution of only two active microstructures, ruling out the electrode polarization effect. We adopt the spectrum of the imaginary component of the electric modulus M″ to distinguish long range hopping from short range hopping. The relative permittivity spectrum permits to identify the possibility of the existence of electric polarizations. Further, it reveals colossal static dielectric constant, which makes it suitable for multitude potential applications in electronic industrial fields.



The funding was provided by université de sfax.


  1. 1.
    S. Sagar, M.R. Anantharaman, On conduction mechanism in paramagnetic phase of Gd based manganites. Bull. Mater. Sci. 35, 41 (2012)CrossRefGoogle Scholar
  2. 2.
    A. Dutta, T.P. Sinha, Impedance spectroscopy study of BaMg1/3Nb2/3O3: frequency and time domain analyses. Phys. B 405, 1475 (2010)CrossRefGoogle Scholar
  3. 3.
    I. Ahmad, M.J. Akhtar, M.M. Hasan, Impedance spectroscopic investigation of electro active regions, conduction mechanism and origin of colossal dielectric constant in Nd1 – xSrxFeO3. Mater. Res. Bull. 60, 474 (2014)CrossRefGoogle Scholar
  4. 4.
    A. Dutta, C. Bharti, T.P. Sinha, Dielectric relaxation in Sr(Mg1/3Nb2/3)O3. Phys. B 403, 3393 (2008)Google Scholar
  5. 5.
    N. Biškup, A. de Andrés, J.L. Martinez, Origin of the colossal dielectric response of Pr0.6Ca0.4MnO3. Phys. Rev. B 72, 024115 (2005)CrossRefGoogle Scholar
  6. 6.
    H. Rahmouni, M. Smari, B. Cherif, E. Dhahri, K. Khirouni, Conduction mechanism, impedance spectroscopic investigation and dielectric behavior of La0.5Ca0.5–xAgxMnO3 manganites with compositions below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 0.2). Dalton Trans. 44, 10457 (2015)CrossRefGoogle Scholar
  7. 7.
    F.B. Abdallah, A. Benali, M. Triki, E. Dhahri, M.P.F. Graca, M.A. Valente, Effect of annealing temperature on structural, morphology and dielectric properties of La0.75Ba0.25FeO3 perovskite. Superlattices Microstruct. 117, 260 (2018)CrossRefGoogle Scholar
  8. 8.
    N. Assoudi, I. Walha, E. Dhahri, S. Alleg, E.K. Hlil, Structural, magnetic and on magnetocaloric properties near the paramagnetic to ferromagnetic phase transition in La0.5ο0.1Ca0.4MnO3 oxide. J. Solid State Commun. 277, 13 (2018)CrossRefGoogle Scholar
  9. 9.
    H. Gencer. M. Pektas., Y. Babur., V.S. Kolat., T. Izgi. S. Atalay, Electrical transport and magnetoresistance of La0.67Ca0.33MnO3: Agx (x = 0, 0.1, 0.2, 0.3, 0.4) Composites. J. Magn. 17, 176 (2012)CrossRefGoogle Scholar
  10. 10.
    S. Vadnala, T.D. Rao, P. Pal, S. Asthana, Study of structural effect on Eu-substituted LSMO manganite for high temperature coefficient of resistance. Phys. B 448, 277 (2014)CrossRefGoogle Scholar
  11. 11.
    B. Cherif, H. Rahmouni, M. Smari, E. Dhahri, N. Moutia, K. Khirouni, Transport properties of silver–calcium doped lanthanum manganite. Phys. B 457, 244 (2015)CrossRefGoogle Scholar
  12. 12.
    S.O. Manjunatha, A. Rao, T.Y. Lin, C.M. Chang, Y.K. Kuo, Effect of Ba substitution on structural, electrical and thermal properties of La0.65Ca0.35_xBaxMnO3 manganites, J. Alloy. Compd. 619, 303 (2015)CrossRefGoogle Scholar
  13. 13.
    V. Sridharan. L. Seetha Lakshmi. R. Govindraj., R. Nithya., D.V. Natarajan. T.S. Radhakrishnan, Transport and thermal properties of La0.67Ca0.33Mn1–xMx O3 (M = Fe, Zr and Hf). J. Alloy. Compd. 326, 65 (2001)CrossRefGoogle Scholar
  14. 14.
    N. Assoudi, M. Smari, I. Walha, E. Dhahri, S. Shevyrtalov, O. Dikaya, V. Rodionova, Unconventional critical behavior near the phase transition temperature and magnetocaloric effect in La0.5Ca0.4Ag0.1MnO3 compound. Chem. Phys. Lett. 706, 182 (2018)CrossRefGoogle Scholar
  15. 15.
    M. Nadeem, M.J. Akhtar, Melting/collapse of charge orbital ordering and spread of relaxation time with frequency in La0.5Ca0.5MnO3+y by impedance spectroscopy. J. Appl. Phys. 104, 103713 (2008)CrossRefGoogle Scholar
  16. 16.
    M. Smari, H. Rahmouni, N. Elghoul, I. Walha, E. Dhahri, K. Khirouni, Electric–dielectric properties and complex impedance analysis of La0.5Ca0.5–xAgxMnO3 manganites. RSC Adv. 5, 2184 (2015)CrossRefGoogle Scholar
  17. 17.
    R. Ganguly, I.K. Gopalakrishnan, J.V. Yakhmi, Magnetic and electrical properties of La0.67Ca0.33MnO3 as influenced by substitution of Cr. Phys. B 275, 308 (2000)CrossRefGoogle Scholar
  18. 18.
    T. Barbier, C.A. Lambert, C. Honstrette, F. Gervais, M. Lethiecq, Dielectric properties of hexagonal perovskite ceramics prepared by different routes. Mater. Res. Bull. 47, 4427 (2012)CrossRefGoogle Scholar
  19. 19.
    H. Rahmouni, R. Jemai, N. Kallel, A. Selmi, K. Khirouni, Titanium effects on the transport properties in La0.7Sr0.3Mn1–xTixO3. J. Alloy. Compd. 497, 1 (2010)CrossRefGoogle Scholar
  20. 20.
    J.H. Miao, L. Yuan, Y.Q. Wang, J.L. Shang, G.Q. Yu, G.M. Ren, X. Xiao, S.L. Yuan, Electrical transport and magnetoresistance in La2 / 3Ca1 / 3MnO3/CuO composites. Mater. Lett. 60, 2214 (2006)CrossRefGoogle Scholar
  21. 21.
    B.X. Huang, Y.H. Liu, R.Z. Zhang, X. Yuan, C.J. Wang., L.M. Mei, Low-field MR behaviour in La0.67Ca0.33MnO3/ZrO2 composite system. J. Phys. D Appl. Phys. 36, 1923 (2003)CrossRefGoogle Scholar
  22. 22.
    V.P.S. Awana, R. Tripathi, S. Balamurugan, H. Kishan, E.T. Muromachi, Magneto-transport of high TCR (temperature coefficient of resistance) La2/3Ca1/3MnO3: Ag polycrystalline composites. Solid State Commun. 140, 410 (2006)CrossRefGoogle Scholar
  23. 23.
    N. Panwar, D.K. Pandya, S.K. Agarwal., J. Physn, Magneto-transport and magnetization studies of Pr2/3Ba1/3MnO3:Ag2O composite manganites. Condens. Matter 19, 456224 (2007)CrossRefGoogle Scholar
  24. 24.
    A. Karmakar, S. Majumdar, A.K. Singh. S. Giri, Intragrain electrical inhomogenities and compositional variation of static dielectric constant in LaMn1 – xFexO3. J. Phys. D: Appl. Phys. 42, 092004 (2009)CrossRefGoogle Scholar
  25. 25.
    L. Pi, M. Hervieu, A. Maignan, C. Martin, B. Raveau, Structural and magnetic phase diagram and room temperature CMR effect of La1–xAgxMnO3. Solid State Commun. 126, 229 (2003)CrossRefGoogle Scholar
  26. 26.
    G. Ailing Feng, Y. Wu, Wang, C. Pan, Synthesis, preparation and mechanical property of wood fiber-reinforced poly(vinyl chloride) composites. J. Nanosci. Nanotechnol. 17, 3859 (2017)CrossRefGoogle Scholar
  27. 27.
    Y. Koutsawa, Overall properties of piezoelectric composites with spring-type imperfect interfaces using the mechanics of structure genome. J. Compos. Part B 153, 337 (2018)CrossRefGoogle Scholar
  28. 28.
    K. Zirui Jia, G. Lin, H. Wu, Xing, H. Wu, Recent progresses of high-temperature microwave-absorbing materials. J. NANO Brief Rep. Rev. 13, 1830005 (2018)Google Scholar
  29. 29.
    C. Pan, K. Kou, G. Wu, Y. Zhang, Y. Wang, Fabrication and characterization of AlN/PTFE composites with low dielectric constant and high thermal stability for electronic packaging. J. Mater. Sci. Mater. Electron. 27, 286 (2016)CrossRefGoogle Scholar
  30. 30.
    G. Wu, J. Li, K. Wang, Y. Wang, C. Pan, A. Feng, In situ synthesis and preparation of TiO2/polyimide composite containing phenolphthalein functional group. J. Mater. Sci. Mater. Electron. 28, 6544 (2017)CrossRefGoogle Scholar
  31. 31.
    N. Assoudi, I. Walha, K. Nouri, E. Dhahri, L. Bessais, Effect of synthesis route on structural, magnetic and magnetocaloric aspects and critical behavior of La0.6Ca0.3Ag0.1MnO3. J. Alloys Comp. 753, 282 (2018)CrossRefGoogle Scholar
  32. 32.
    A.E. Pantoja, H.J. Trodahl, R.G. Buckley, Y. Tomioka, Y. Tokura, Raman spectroscopy of orthorhombic La1– xCaxMnO3, x = 0.1-0.3. J. Phys.Condens. Matter 13, 3741 (2001)CrossRefGoogle Scholar
  33. 33.
    P.T. Phong, S.J. Jang, B.T. Huy, Y.I. Lee, I.J. Lee, Structural, magnetic, infrared and Raman studies of La0.8SrxCa0.2–xMnO3 (0 ≤ x ≤ 0.2). J. Mater. Sci. Mater. Electron. 24, 2292 (2013)CrossRefGoogle Scholar
  34. 34.
    A.R. Shelke, N.G. Deshpande, Effect of the cation substitution on the structural, electrical and magnetic properties in the electron-doped manganites. J. Ferroelectr. 516, 98 (2017)CrossRefGoogle Scholar
  35. 35.
    H. Rahmouni, B. Cherif, M. Smari, E. Dhahri, N. Moutia, K. Khirouni, Effect of exceeding the concentration limit of solubility of silver in perovskites on the dielectric and electric properties of half doped lanthanum–calcium manganite. Phys. B 473, 6 (2015)CrossRefGoogle Scholar
  36. 36.
    H. Rahmouni, M. Nouiri, R. Jemai, N. Kallel, F. Rzigua, A. Selmi, K. Khirouni, S. Alaya, Electrical conductivity and complex impedance analysis of 20% Ti-doped La0.7Sr0.3MnO3 perovskite. J. Magn. Magn. Mater. 316, 28 (2007)CrossRefGoogle Scholar
  37. 37.
    A. Bettaibi, R. M’nassri, A. Selmi, H. Rahmouni, N. Chniba-Boudjada, A. Cheikhrouhou, K. Khirouni, Effect of chromium concentration on the structural, magnetic and electrical properties of praseodymium-calcium manganite. J. Alloy. Compd. 650, 276 (2015)CrossRefGoogle Scholar
  38. 38.
    H. Rahmouni, A. Dhahri, K. Khirouni, The effect of tin addition on the electrical conductivity of Sn-doped LaBaMnO3. J. Alloy. Compd. 591, 262 (2014)CrossRefGoogle Scholar
  39. 39.
    W. Hzez, A. Benali, H. Rahmouni, E. Dhahri, K. Khirouni, B.F.O. Costa, Effects of oxygen deficiency on the transport and dielectric properties of NdSrNbO. J. Phys. Chem. Solids. 117, 12 (2018)CrossRefGoogle Scholar
  40. 40.
    E. Elbadraoui, J.L. Baudour, C. Leroux, S. Fritsch, F. Bouree, B. Gillot, A. Rousset, Cation distribution, short-range order and small polaron hopping conduction in nickel manganites, from a neutron niffraction study. Phys. Stat. Sol 212, 129 (1999)CrossRefGoogle Scholar
  41. 41.
    M. Shah, M. Nadeem, M. Atif, Dielectric relaxation with polaronic and variable range hopping mechanisms of grains and grain boundaries in Pr0.8Ca0.2MnO3. J. Appl. Phys. 112, 103718 (2012)CrossRefGoogle Scholar
  42. 42.
    M. Shah, M. Nadeem, M. Idrees, M. Atif, M.J. Akhtar, Change of conduction mechanism in the impedance of grain boundaries in Pr0.4Ca0.6MnO3. J. Magn. Magn. Mater. 332, 66 (2013)CrossRefGoogle Scholar
  43. 43.
    J. Yang, J. He, J.Y. Zhu, W. Bai, L. Sun, X.J. Meng, X.D. Tang, C.G. Duan, D.R. .Emiens, J.H. Qiu, J.H. Chu, Small polaron migration associated multiple dielectric responses of multiferroic DyMnO3 polycrystal in low temperature region. Appl. Phys. Lett. 101, 222904 (2012)CrossRefGoogle Scholar
  44. 44.
    M.H. Abdullah, A.N. Yusoff, Complex impedance and dielectric properties of an Mg–Zn ferrite. J. Alloy. Compd. 233, 135 (1996)CrossRefGoogle Scholar
  45. 45.
    A. Shukla, R.N.P. Choudhary, Impedance and modulus spectroscopy characterization of La3+/Mn4+ modified PbTiO3 nanoceramics. Curr. Appl. Phys. 11, 422 (2011)CrossRefGoogle Scholar
  46. 46.
    R. Ranjan, R. Kumar, N. Kumar, B. Behera, R.N.P. Choudhary, Impedance and electric modulus analysis of Sm-modified Pb(Zr0.55Ti0.45)1–x/4O3 ceramics. J. Alloy. Compd. 509, 6394 (2011)CrossRefGoogle Scholar
  47. 47.
    K. Srinivas, P. Sarah, S.V. Suryanarayana, Impedance spectroscopy study of polycrystalline Bi6Fe2Ti3O18. Bull. Mater. Sci. 26, 253 (2003)CrossRefGoogle Scholar
  48. 48.
    W. Hzez, H. Rahmouni, E. Dhahri, K. Khirouni, Dielectric properties of niobium-based oxide. J. Alloys Comp. (2017) 348Google Scholar
  49. 49.
    M.B. Hossen, A.K.M.A. Hossain, Complex impedance and electric modulus studies of magnetic ceramic Ni0.27Cu0.10Zn0.63Fe2O4,. J Adv Ceram 4, 225 (2015)Google Scholar
  50. 50.
    A. Molak, M. Paluch, S. Pawlus, J. Klimontko, Z. Ujma, I. Gruszka, Electric modulus approach to the analysis of electric relaxation in highly conducting (Na0.75Bi0.25)(Mn0.25Nb0.75)O3 ceramics. J. Phys. D Appl. Phys. 38, 1460 (2005)CrossRefGoogle Scholar
  51. 51.
    S. Angappan, L.J. Berchmans, C.O. Augustin, Sintering behaviour of MgAl2O4—a prospective anode material. Mater. Lett. 58, 2289 (2004)CrossRefGoogle Scholar
  52. 52.
    P.V.B. Reddy, B. Ramesh, C.G. Reddy, Electrical conductivity and dielectric properties of zinc substituted lithium ferrites prepared by sol–gel method. Phys. B 405, 1856 (2010)CrossRefGoogle Scholar
  53. 53.
    M.J. Iqbal, Z. Ahmad, Electrical and dielectric properties of lithium manganite nanomaterials doped with rare-earth elements. J. Power Sources 179, 769 (2008)CrossRefGoogle Scholar
  54. 54.
    R.P. Pawar, V. Puri, Structural, electrical and dielectric properties of (Sr1–xCax)MnO3 ceramics. Ceram. Int. 40, 10430 (2014)CrossRefGoogle Scholar
  55. 55.
    A.C. Lasaga, R.T. Cygan, Electronic and ionic polarizabilities of silicate minerals. Am. Miner. 67, 334 (1982)Google Scholar
  56. 56.
    G.F.L. Ferreira, Polarization in hopping transport. J. Electrost. 11, 117 (1981)Google Scholar
  57. 57.
    A.K. Jonscher, F. Meca, H.M. Millan, Charge-carrier contributions to dielectric loss. J. Phys. C Solid State Phys 12, L296 (1979)CrossRefGoogle Scholar
  58. 58.
    S. Saha, T.P. Sinha, Dielectric relaxation in SrFe1/2Nb1/2O3. J. Appl. Phys. 99, 014109 (2006)CrossRefGoogle Scholar
  59. 59.
    Y. Cui, L. Zhang, G. Xie, R. Wang, Magnetic and transport and dielectric properties of polycrystalline TbMnO3. Solid state Commun. 138, 484 (2006)Google Scholar
  60. 60.
    J. Suchanicz, The low-frequency dielectric relaxation Na0.5Bi0.5TiO3 ceramics. Mater. Sci. Eng. B 55, 118 (1998)CrossRefGoogle Scholar
  61. 61.
    E. Iguchi, Y. Hashimoto, M. Kurumada, F. Munakata, Multielectronic conduction in La1–xSrxGa1/2Mn1/2O3–y as solid oxide fuel cell cathode. J. Appl. Phys. 94, 1758 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Nadia Assoudi
    • 1
    Email author
  • W. Hzez
    • 2
  • R. Dhahri
    • 1
  • I. Walha
    • 1
  • H. Rahmouni
    • 3
  • K. Khirouni
    • 2
  • E. Dhahri
    • 1
  1. 1.Laboratoire de Physique Appliquée, Faculté des SciencesUniversité de SfaxSfaxTunisia
  2. 2.Laboratoire de Physique des Matériaux et des Nanomatériaux appliquée à l’Environnement, Faculté des Sciences de Gabès cité ErriadhUniversité de GabèsGabèsTunisia
  3. 3.Institut Supérieur des Sciences Appliquées et de Technologie de KasserineUnité de recherche Matériaux Avancés et Nanotechnologies (URMAN), Université de KairouanKasserineTunisia

Personalised recommendations