Advertisement

Avoidance of boron rich layer formation in the industrial boron spin-on dopant diffused n-type silicon solar cell without additional oxidation process

  • Ning Yang
  • Shizheng Li
  • Jinlin Yang
  • Hongbo Li
  • Xiaojun Ye
  • Cui Liu
  • Xiao Yuan
Article
  • 18 Downloads

Abstract

In the present work, the properties of boron rich layer (BRL) formed in the boron spin-on dopant diffusion as well as the avoidance of BRL formation without additional oxidation process are studied. The boron concentration distributions characterized by SIMS exhibit the formation and avoidance of BRL with the variation of oxygen content in the boron diffusion process. The existence of BRL can degrade the minority carrier lifetime due to the enhancement of recombination as well as weaken the anti-reflection effect due to the unmatched refractive index of BRL and SiO2/SiNx stack layers. The decreased minority carrier lifetime together with the increased surface reflectance eventually deteriorates the electrical behavior of solar cell with a maximum power conversion efficiency loss of 0.55%. Significantly, the formation of BRL is found to be avoided due to the complete oxidation of excess elemental boron atoms when the oxygen content increases to 10%, contributing to the recovery of solar cells’ electrical performance with an average efficiency of 19.47%. The present work will be helpful to deepen the understanding of BRL and simplify the boron diffusion process for massive cell production.

Notes

Acknowledgements

This work was supported by the Shanghai Science and Technology Committee Project (17DZ1201102).

References

  1. 1.
    J. Cotter, J. Guo, P. Cousins, M. Abbott, F. Chen, K. Fisher, IEEE Trans. Electron Devices 53(8), 1893–1901 (2006)CrossRefGoogle Scholar
  2. 2.
    J. Schmidt, A.G. Aberle, R. Hezel, in Investigation of carrier lifetime instabilities in Cz-grown silicon, photovoltaic specialists conference, 1997. Conference record of the twenty-sixth IEEE, IEEE, 1997, pp. 13–18Google Scholar
  3. 3.
    S. Glunz, S. Rein, J. Lee, W. Warta, J. Appl. Phys. 90(5), 2397–2404 (2001)CrossRefGoogle Scholar
  4. 4.
    D. Macdonald, L. Geerligs, Appl. Phys. Lett. 85(18), 4061–4063 (2004)CrossRefGoogle Scholar
  5. 5.
    B. Singha, C.S. Solanki, Semicond. Sci. Technol. 31(3), 035009 (2016)CrossRefGoogle Scholar
  6. 6.
    C. Kim, S. Park, Y.D. Kim, H. Park, S. Kim, H. Kim, H. Lee, D. Kim, Thin Solid Films 564, 253–257 (2014)CrossRefGoogle Scholar
  7. 7.
    P. Cousins, J. Cotter, in Misfit dislocations generated during non-ideal boron and phosphorus diffusion and their effect on high-efficiency silicon solar cells, Photovoltaic Specialists Conference, 2005. Conference record of the thirty-first IEEE, IEEE, 2005, pp. 1047–1050Google Scholar
  8. 8.
    P.J. Cousins, J.E. Cotter, IEEE Trans. Electron Devices 53(3), 457–464 (2006)CrossRefGoogle Scholar
  9. 9.
    M.A. Kessler, T. Ohrdes, B. Wolpensinger, N.-P. Harder, Semicond. Sci. Technol. 25(5), 055001 (2010)CrossRefGoogle Scholar
  10. 10.
    E. Arai, H. Nakamura, Y. Terunuma, J. Electrochem. Soc. 120(7), 980–987 (1973)CrossRefGoogle Scholar
  11. 11.
    D. Brown, P. Kennicott, J. Electrochem. Soc. 118(2), 293–300 (1971)CrossRefGoogle Scholar
  12. 12.
    M.A. Kessler, T. Ohrdes, B. Wolpensinger, R. Bock, N.-P. Harder, in Characterisation and implications of the boron rich layer resulting from open-tube liquid source BBr 3 boron diffusion processes, Photovoltaic Specialists Conference (PVSC), 2009 34th IEEE, IEEE, 2009, pp. 001556–001561Google Scholar
  13. 13.
    K. Mok, A. Vlooswijk, V. Mohammadi, L. Nanver, ECS J. Solid State Sci. Technol. 2(9), P413–P417 (2013)CrossRefGoogle Scholar
  14. 14.
    J. Libal, R. Petres, T. Buck, R. Kopecek, G. Hahn, R. Ferre, M. Vetter, I. Martin, K. Wambach, P. Fath, in N-type multicrystalline silicon solar cells: BBr3-diffusion and passivation of p+-diffused silicon surfaces. 20th European photovoltaic solar energy conference, 2005, pp. 793–796Google Scholar
  15. 15.
    B. Singha, C.S. Solanki, Mater. Sci. Semicond. Process. 57, 83–89 (2017)CrossRefGoogle Scholar
  16. 16.
    B. Singha, C.S. Solanki, Energy Proc. 57, 117–125 (2014)CrossRefGoogle Scholar
  17. 17.
    X. Ning, J. Electrochem. Soc. 143(10), 3389–3393 (1996)CrossRefGoogle Scholar
  18. 18.
    K. Ryu, A. Upadhyaya, H.-J. Song, C.-J. Choi, A. Rohatgi, Y.-W. Ok, Appl. Phys. Lett. 101(7), 073902 (2012)CrossRefGoogle Scholar
  19. 19.
    K. Ryu, E. Cho, A. Rohatgi, Y.-W. Ok, Prog. Photovoltaics Res. Appl. 24(8), 1109–1115 (2016)CrossRefGoogle Scholar
  20. 20.
    H.K. Raut, V.A. Ganesh, A.S. Nair, S. Ramakrishna, Energy Environ. Sci. 4(10), 3779–3804 (2011)CrossRefGoogle Scholar
  21. 21.
    J.M. Burst, J.N. Duenow, D.S. Albin, E. Colegrove, M.O. Reese, J.A. Aguiar, C.S. Jiang, M.K. Patel, M.M. Al-Jassim, D. Kuciauskas, S. Swain, T. Ablekim, K.G. Lynn, W.K. Metzger, Nat. Energy 1(3), 16015 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations