Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 23, pp 20071–20080 | Cite as

Effects of nitriding temperature on the structure and magnetic properties of CoFe2 alloy

  • Y. S. Zhao
  • M. Wang
  • Y. Q. MaEmail author


It has been reported that the nitridation can increase the magnetization of α-Fe by 20%. The CoFe2 alloy has the highest magnetization among all binary alloys, thus whether the nitridation can further enhance its magnetization. In the present work, the uniform and dispersed 16-nm CoFe2O4 particles were separated by the MgO matrix in order to prepare the fine CoFe2 particles, beneficial for the nitridation reaction. With increasing the nitridation temperature, the crystal structure of the Co–Fe–N alloy experiences α″-Fe16N2 below 250 °C, γ′-Fe4N at 300 °C and ε-Fe3N between 350 °C and 500 °C. The single-phase ε-CoFe2N was synthesized at 400 °C, a much lower temperature than that previously reported. The results of magnetic measurement at 10 K show that the nitridation at 200 °C increases the magnetization of CoFe2 from 228 to 292 emu/g by 28%; the nitridation at temperatures of 200, 250 and 300 °C enhances both the magnetization and coercivity of the CoFe2 alloy. These CoFe2 nitrides are very interesting and of importance both from physical and industrial aspects, which deserves further investigations.



This work was supported by the National Natural Science Foundation of China (Grant nos. 51471001 and 11174004).


  1. 1.
    S. Peng, C. Wang, J. Xie, S.H. Sun, Synthesis and stabilization of monodisperse Fe nanoparticles. J. Am. Chem. Soc. 128, 10676–10677 (2006)CrossRefGoogle Scholar
  2. 2.
    I. Tabakovic, S. Riemer, K. Tabakovic, M. Sun, M. Kief, Mechanism of saccharin transformation to metal sulfides and effect of inclusions on corrosion susceptibility of electroplated CoFe magnetic films. J. Electrochem. Soc. 153(8), C586–C593 (2006)CrossRefGoogle Scholar
  3. 3.
    B. Schwarz, S.R. Meka, R.E. Schacherl, E. Bischoff, E.J. Mittemeijer, Nitriding of iron-based ternary Fe–V–Si alloy: the precipitation process of separate nitrides. Acta Mater. 76, 394–403 (2014)CrossRefGoogle Scholar
  4. 4.
    B.Q. Geng, Y.Q. Ma, M. Wang, Z.L. Ding, W.H. Song, B.C. Zhao, Magnetic/magnetostrictive properties together with resistivity and corrosion behaviors of CoFe2 and its composite with CoFe2N. J. Mater. Sci. Technol. 33, 744–750 (2017)CrossRefGoogle Scholar
  5. 5.
    J.C. Crowhurst, A.F. Goncharov, B. Sadigh, C.L. Evans, P.G. Morrall, J.L. Ferreira, A.J. Nelson, Synthesis and characterization of the nitrides of platinum and iridium. Science 311, 1275–1278 (2006)CrossRefGoogle Scholar
  6. 6.
    L.M. Armijo, L.A. Ahuré-Powell, N.M. Wereley, Rheological characterization of a magnetorheological ferrofluid using iron nitride nanoparticles. J. Appl. Phys. 117, 17C747–17C744 (2015)CrossRefGoogle Scholar
  7. 7.
    X.Y. Li, X.J. Sun, J.B. Wang, Q.F. Liu, Microstructure and magnetic properties of iron nitride thin films. J. Alloys Compd. 582, 398–402 (2014)CrossRefGoogle Scholar
  8. 8.
    H.R. Soni, V. Mankad, S.K. Gupta, P.K. Jha, A first principles calculations of structural, electronic, magnetic and dynamical properties of mononitrides FeN and CoN. J. Alloys Compd. 522, 106–113 (2012)CrossRefGoogle Scholar
  9. 9.
    L. Zhang, T.Y. Ma, Z. Ahmad, T.Z. Yuan, C. Lu, Y.B. Xu, M. Yan, Low temperature pulsed laser deposition of textured γ′-Fe4N films on Si (100). J. Alloys Compd. 509, 5075–5078 (2011)CrossRefGoogle Scholar
  10. 10.
    G.K. Li, Y. Liu, R.B. Zhao, J.J. Shen, S. Wang, P.J. Shan, C.M. Zhen, D.L. Hou, Crystallographic phases and magnetic properties of iron nitride films. Thin Solid Films 589, 22–26 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Kikkawa, A. Yamada, Y. Masubuchi, T. Takeda, Fine Fe16N2 powder prepared by low-temperature nitridation. Mater. Res. Bull. 43, 3352–3357 (2008)CrossRefGoogle Scholar
  12. 12.
    J. Tang, J.M. Hong, A.H. Wu, W.S. Liu, Y.H. He, Y.W. Du, Saturation magnetostriction of α″-Fe16N2 phase. J. Alloys Compd. 479, 32–34 (2009)CrossRefGoogle Scholar
  13. 13.
    T.K. Kim, M. Takahashi, New magnetic material having ultrahigh magnetic moment. Appl. Phys. Lett. 20, 492–494 (1972)CrossRefGoogle Scholar
  14. 14.
    K. Guo, D. Rau, L. Toffoletti, C. Müller, U. Burkhardt, W. Schnelle, R. Niewa, U. Schwarz, Ternary metastable nitrides ε-Fe2TMN (TM = Co, Ni): high-pressure, high-temperature synthesis, crystal structure, thermal stability, and magnetic properties. Chem. Mater. 24, 4600–4606 (2012)CrossRefGoogle Scholar
  15. 15.
    M. Komuro, Y. Kozono, M. Hanazono, Y. Sugita, Epitaxial growth and magnetic properties of Fe16N2 films with high saturation magnetic flux density. J. Appl. Phys. 67, 5126–5130 (1990)CrossRefGoogle Scholar
  16. 16.
    M.J. Yu, Y. Xu, Q. Mao, F.Z. Li, C.G. Wang, Electromagnetic and absorption properties of nano-sized and micro-sized Fe4N particles. J. Alloys Compd. 656, 362–367 (2016)CrossRefGoogle Scholar
  17. 17.
    S. Bhattacharyya, Iron nitride family at reduced dimensions: a review of their synthesis protocols and structural and magnetic properties. J. Phys. Chem. C 119, 1601–1622 (2015)CrossRefGoogle Scholar
  18. 18.
    L.L. Wang, W.T. Zheng, T. An, N. Ma, J. Gong, Effect of Ni concentration on the structure and magnetic properties for nanocrystalline Fe–Ni–N thin films. J. Alloys Compd. 495, 265–267 (2010)CrossRefGoogle Scholar
  19. 19.
    M. Robbins, J.G. White, Magnetic properties of epsilon-iron nitride. J. Phys. Chem. Solids 25, 717–720 (1964)CrossRefGoogle Scholar
  20. 20.
    J. Theerthagiri, S.B. Dalavi, M.M. Raja, R.N. Panda, Magnetic properties of nanocrystalline ε-Fe3N and Co4N phases synthesized by newer precursor route. Mater. Res. Bull. 48, 4444–4448 (2013)CrossRefGoogle Scholar
  21. 21.
    X. Sun, X. Zhu, Y.R. Ruan, Z.L. Ding, W.H. Song, B.C. Zhao, Y.Q. Ma, NiFe2 and its nitride γ‘-NiFe2N derived from NiFe2O4: magnetostriction, thermal expansion, resistivity and corrosion resistance. Mater. Res. Bull. 89, 245–252 (2017)CrossRefGoogle Scholar
  22. 22.
    N.S. Gajbhiye, S. Bhattacharyya, Spin-glass-like ordering in ε-Fe3−xNixN (0.1 ≤ x ≤ 0.8) nanoparticles. Mater. Chem. Phys. 108, 201–207 (2008)CrossRefGoogle Scholar
  23. 23.
    F.L. Zan, Y.Q. Ma, Q. Ma, G.H. Zheng, Z.X. Dai, M.Z. Wu, G. Li, Z.Q. Sun, X.S. Chen, One-step hydrothermal synthesis and characterization of high magnetization CoFe2O4/Co0.7Fe0.3 nanocomposite permanent magnets. J. Alloys Compd. 553, 79–85 (2013)CrossRefGoogle Scholar
  24. 24.
    H. Taslimi, M. Heydarzadeh Sohi, S. Mehrizi, M. Saremi, Studies of the effects of addition of P and Cr on microstructure and electrical resistivity of nanocrystalline CoFe thin films. J. Mater. Sci. Mater. Electron. 26, 2962–2968 (2015)CrossRefGoogle Scholar
  25. 25.
    M. Atakan Tekgül, H. Alper, M. Kockar, Haciismailoglu, The effect of ferromagnetic and non-ferromagnetic layer thicknesses on the electrodeposited CoFe/Cu multilayers. J. Mater. Sci. Mater. Electron. 26, 2411–2417 (2015)CrossRefGoogle Scholar
  26. 26.
    S. Mehrizi, M. Heydarzadeh, Sohi, Electrical resistivity and magnetic properties of electrodeposited nanocrystalline CoFe thin films. J. Mater. Sci. Mater. Electron. 26, 7381–7389 (2015)CrossRefGoogle Scholar
  27. 27.
    M. Atakan Tekgül, H. Alper, Kockar, Magnetoresistance behaviour in CoFe/Cu multilayers: thin Cu layer effect. J. Mater. Sci. Mater. Electron. 27, 10059–10064 (2016)CrossRefGoogle Scholar
  28. 28.
    P.P. Mishra, M.M. Raja, R.N. Panda, Enhancement of magnetic moment in Co substituted Nanocrystalline ε-CoxFe3–xN (0.2 ≤ x ≤ 0.4) synthesized by modified citrate precursor route. Mater. Res. Bull. 75, 127–133 (2016)CrossRefGoogle Scholar
  29. 29.
    N.S. Gajbhiye, R.S. Ningthoujam, S. Bhattacharyya, Magnetic properties of Co and Ni substituted ε-Fe3N nanoparticles. Hyperfine Interact. 164, 17–26 (2005)CrossRefGoogle Scholar
  30. 30.
    R. Zulhijah, K. Yoshimi, A.B.D. Nandiyanto, T. Ogi, T. Iwaki, K. Nakamura, K. Okuyama, α″-Fe16N2 phase formation of plasma-synthesized core–shell type a-Fe nanoparticles under various conditions. Adv. Powder Technol. 25, 582–590 (2014)CrossRefGoogle Scholar
  31. 31.
    S.T. Xu, Y.Q. Ma, Y.F. Xu, X. Sun, B.Q. Geng, G.H. Zheng, Z.X. Dai, Pure dipolar-interacted CoFe2O4 nanoparticles and their magnetic properties. Mater. Res. Bull. 62, 142–147 (2015)CrossRefGoogle Scholar
  32. 32.
    J.M. Soares, F.A.O. Cabral, J.H.D. Araújo, F.L.A. Machado, Exchange-spring behavior in nanopowders of CoFe2O4–CoFe2. Appl. Phys. Lett. 98, 072502 (2011)CrossRefGoogle Scholar
  33. 33.
    F.L. Zan, Y.Q. Ma, Q. Ma, Y.F. Xu, Z.X. Dai, G.H. Zheng, M.Z. Wu, G. Li, Magnetic and impedance properties of nanocomposite CoFe2O4/Co0.7Fe0.3 and single phase CoFe2O4 via one-step hydrothermal. J. Am. Ceram. Soc. 96(10), 3100–3107 (2013)Google Scholar
  34. 34.
    S.T. Xu, Y.Q. Ma, G.H. Zheng, Z.X. Dai, Simultaneous effects of surface spins: rarely large coercivity, high remanence magnetization and jumps in the hysteresis loops observed in CoFe2O4 nanoparticles. Nanoscale 7, 6520–6526 (2015)CrossRefGoogle Scholar
  35. 35.
    B.Q. Geng, Z.L. Ding, Y.Q. Ma, Unraveling the correlation between the remanence ratio and the dipolar field in magnetic nanoparticles by tuning concentration, moment, and anisotropy. Nano Res. 9, 2772–2781 (2016)CrossRefGoogle Scholar
  36. 36.
    B.Q. Geng, Y.Q. Ma, S.T. Xu, Y.F. Xu, X. Sun, Z.X. Dai, G.H. Zheng, High magnetic performance of cobalt ferrite and anomalous magnetizing behavior of CoFe2/oxide derived from ferrite. Ceram. Int. 42, 317–324 (2016)CrossRefGoogle Scholar
  37. 37.
    S. Kikkawa, K. Kubota, T. Takeda, Particle size dependence in low temperature nitridation reaction for Fe16N2. J. Alloys Compd. 449, 7–10 (2008)CrossRefGoogle Scholar
  38. 38.
    X.G. Ma, J.J. Jiang, P. Liang, J. Wang, Q. Ma, Q.K. Zhang, Structural stability and magnetism of γ′-Fe4N and CoFe3N compounds. J. Alloys Compd. 480, 475–480 (2009)CrossRefGoogle Scholar
  39. 39.
    A. Tayal, M. Gupta, A. Gupta, V. Ganesan, L. Behera, S. Singh, S. Basu, Study of magnetic iron nitride thin films deposited by high power impulse magnetron sputtering. Surf. Coat. Technol. 275, 264–269 (2015)CrossRefGoogle Scholar
  40. 40.
    M.P. Reddy, A.M.A. Mohamed, X.B. Zhou, S. Du, Q. Huang, A facile hydrothermal synthesis, characterization and magnetic properties of mesoporous CoFe2O4 nanospheres. J. Magn. Magn. Mater. 388, 40–44 (2015)CrossRefGoogle Scholar
  41. 41.
    D. Zou, Y.Q. Ma, S.B. Qian, B.T. Huang, G.H. Zheng, Z.X. Dai, Improved luminescent properties of novel nanostructured Eu3+ doped yttrium borate synthesized with carbon nanotube templates. J. Alloys Compd. 584, 471–476 (2014)CrossRefGoogle Scholar
  42. 42.
    D. Zou, Y.Q. Ma, S.B. Qian, G.H. Zheng, Z.X. Dai, G. Li, M.Z. Wu, Morphology and photoluminescence properties of YBO3:Eu3+(5%) tuned by B3+ source, stirring speed, pH value and post-annealing. J. Alloys Compd. 574, 142–148 (2013)CrossRefGoogle Scholar
  43. 43.
    J. Jin, X. Sun, M. Wang, Z.L. Ding, Y.Q. Ma, The magnetization reversal in CoFe2O4/CoFe2 granular systems. J. Nanopart. Res. 18, 383–393 (2016)CrossRefGoogle Scholar
  44. 44.
    M. Wang, X. Sun, B.Q. Geng, S.T. Zhang, Y.Q. Ma, Synthesis and magnetic properties of CoFe2/CoFe2O4 particles diluted in the MgO matrix. Mater. Res. Bull. 95, 9–16 (2017)CrossRefGoogle Scholar
  45. 45.
    X. Sun, Y.Q. Ma, S.T. Xu, Y.F. Xu, B.Q. Geng, The stress, surface spin and dipolar interaction in the diluted NiFe2O4 nanoparticles by the SiO2 matrix: characterization and analyses. Mater. Charact. 107, 343–349 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Anhui Key Laboratory of Information Materials and Devices, School of Physics and Materials ScienceAnhui UniversityHefeiPeople’s Republic of China

Personalised recommendations