Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 23, pp 20064–20070 | Cite as

Temperature dependent photoluminescence from WS2 nanostructures

  • Shivani Sharma
  • Shubham Bhagat
  • Jasvir Singh
  • Manzoor Ahmad
  • Sandeep Sharma
Article
  • 95 Downloads

Abstract

Owing to their intriguing physical properties, two-dimensional transition metal dichalcogenides such as WS2 and MoS2 have gained significant attention in the research community. Their tunable bandgap justify their use in future optical and nanoelectronics devices. Here, we report the room temperature Raman spectra and temperature dependent photoluminescence of WS2 nanostructures prepared in liquid media. The resonance Raman spectra revealed various first order modes together with higher order modes that were inaccessible with excitation away from resonance absorption. The luminescence from these nanostructures displayed red-shift and linear temperature dependence in the range 293–363 K. The observed negative temperature coefficients are very small and may arise from anharmonicity and thermal expansion. Further, optical measurements revealed that WS2 quantum dots exhibits strong spin–orbit coupling ≈ 650 meV, larger than observed for monolayer sheets of WS2 (≈ 400 meV). The stronger spin–orbit coupling together with highly luminescent nature make them attractive for applications in spintronics and optoelectronics devices.

Notes

Acknowledgements

One of the authors Shivani Sharma acknowledges the UPE-fellowship provided by GNDU Amritsar. This work was supported by UGC-New Delhi, India under the Grant no. F.30-137/2015 BSR.

References

  1. 1.
    Q.H. Wang, K.K. Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition-metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012)CrossRefGoogle Scholar
  2. 2.
    K.S. Novoselov, Graphene: materials in the flatland (Nobel lecture). Angew. Chem. Int. Ed. 83, 837–849 (2011)Google Scholar
  3. 3.
    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102:3010451–3010453CrossRefGoogle Scholar
  4. 4.
    B.K. Miremadi, S.R. Morrison, The intercalation and exfoliation of tungsten disulfide. J. Appl. Phys. 63, 4970 (1988)CrossRefGoogle Scholar
  5. 5.
    A. Ghorai, A. Midya, R. Maiti, S.K. Ray, Exfoliation of WS2 in the semiconducting phase using a group of lithium halides: a new method of Li intercalation. Dalton Trans. 45, 14979–14987 (2016)CrossRefGoogle Scholar
  6. 6.
    J.P. Wilcoxon, G.A. Samara, Strong quantum-size effects in a layered semiconductor: MoS2 nanoclusters. Phys. Rev. B 51, 7299–7302 (1995)CrossRefGoogle Scholar
  7. 7.
    D.H. Feng, Z.Z. Xu, T.Q. Jia, X.X. Li, S.Q. Gong, Quantum size effects on exciton states in indirect-gap quantum dots. Phys. Rev. B 68, 035334 (2003)CrossRefGoogle Scholar
  8. 8.
    A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Jonghwan Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010)CrossRefGoogle Scholar
  9. 9.
    S. Sharma, S. Bhagat, J. Singh, R.C. Singh, S. Sharma, Excitation-dependent photoluminescence from WS2 nanostructures synthesized via top-down approach. J. Mater. Sci. 52, 11326–11336 (2017)CrossRefGoogle Scholar
  10. 10.
    S. Bhagat, S. Sharma, J. Singh, S. Sharma, Strain-induced tuning of optical properties of layered MoS2 in communicationGoogle Scholar
  11. 11.
    S. Bhattacharyya, T. Pandey, A.K. Singh, Effect of strain on electronic and thermoelectric properties of few layers to bulk MoS2. Nanotechnology 25, 465701 (2014)CrossRefGoogle Scholar
  12. 12.
    H. Keliang, P. Charles, M.K. Fai, S. Jie, Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 13, 2931–2936 (2013)CrossRefGoogle Scholar
  13. 13.
    H. Yeung Yu, L. Xiaofei, J. Wenjing, C.N. Chan Yui, H. Jianhua, H. Yu-Te, L. Lain-Jong, G. Wanlin, L.S. Ping, Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano 7, 7126–7131 (2013)CrossRefGoogle Scholar
  14. 14.
    Y. Chen, W. Wen, Y. Zhu, N. Mao, Q. Feng, M. Zhang, H.P. Hsu, J. Zhang, Y.S. Huang, L. Xie, Temperature-dependent photoluminescence emission and Raman scattering from Mo1–xWxS2 monolayers. Nanotechnology 27, 445705 (2016)CrossRefGoogle Scholar
  15. 15.
    S.M. Sze, N.K. Kwok. (2006) Physics and Properties of Semiconductors A Review. Wiley, New York, pp 5–75Google Scholar
  16. 16.
    Y.P. Varshni, Temperature dependence of the energy gap in semiconductors. Physica 34, 12170–12177 (1967)CrossRefGoogle Scholar
  17. 17.
    K.P.O. Donnell, X. Chen, Temperature dependence of semiconductor band gaps. Appl. Phys. Lett. 58, 2924–2926 (1991)CrossRefGoogle Scholar
  18. 18.
    J. Pandey, A. Soni, Unraveling biexciton and excitonic excited states from defect bound states in monolayer MoS2. Appl. Surf. Sci. 463, 52–57 (2019)CrossRefGoogle Scholar
  19. 19.
    S. Sharma, J. Singh, S. Bhagat, M. Singh, S. Sharma, Size tunable photoluminescence from WS2 nanostructures. Mater Res Express 5, 045047 (2018)CrossRefGoogle Scholar
  20. 20.
    L. Liangxu, X. Yaoxian, Z. Shaowei, R.M. Ian, C.M. Ong Albert, D.A. Allwood, Fabrication of luminescent monolayered tungsten dichalcogenides quantum dots with giant spin-valley coupling. ACS Nano 7, 8214–8223 (2013)CrossRefGoogle Scholar
  21. 21.
    A. Berkdemir, H.R. Gutierrez, A.R. Botello-Mendez et al., Identification of individual and few layers of WS2 using Raman spectroscopy. Sci. Rep. 3, 1755- (2013)CrossRefGoogle Scholar
  22. 22.
    X. Zhang, Q. Xiao-Fen, S. Wei, W. Jiang-Bin, J. De-Sheng, T.P. Heng, Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 44, 2757–2785 (2015)CrossRefGoogle Scholar
  23. 23.
    N. Wakabayashi, H.G. Smith, R.M. Nicklow, Lattice dynamics of hexagonal MoS2 studied by neutron scattering. Phys. Rev. B 12, 659–663 (1975)CrossRefGoogle Scholar
  24. 24.
    A. Molina, L. Wirtz, Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 84, 155413 (2011)CrossRefGoogle Scholar
  25. 25.
    H.M. Hill, A.F. Rigosi, C. Roquelet, A. Chernikov, T.C. Berkelbach, D.R. Reichman, M.S. Hybertsen, L.E. Brus, T.F. Heinz, F. Tony, Observation of excitonic rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett. 15, 992–2997 (2015)CrossRefGoogle Scholar
  26. 26.
    A. Ramasubramaniam, Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 86, 115409 (2012)CrossRefGoogle Scholar
  27. 27.
    W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.H. Tan, G. Eda, Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7, 791–797 (2013)CrossRefGoogle Scholar
  28. 28.
    R.A. Bromley, R.B. Murray, A.D. Yoffe, The band structures of some transition metal dichalcogenides. III. Group VIA: trigonal prism materials. J. Phys. C Solid State Phys. 5, 759 (1972)CrossRefGoogle Scholar
  29. 29.
    W. Zhao, R.M. Ribeiro, M. Toh, A. Carvalho, C. Kloc, A.H.C. Neto, G. Eda, Origin of indirect optical transitions in few-layer MoS2,WS2, and WSe2. Nano Lett. 13, 5627–5634 (2013)CrossRefGoogle Scholar
  30. 30.
    Z.X. Gan, L.Z. Liu, H.Y. Wu, Y.L. Hao, Y. Shan, X.L. Wu, P.K. Chu, Quantum confinement effects across two-dimensional planes in MoS2 quantum dots. Appl. Phys. Lett. 106, 233113 (2015)CrossRefGoogle Scholar
  31. 31.
    J. Chang, L.F. Register, S.K. Banerjee, Ballistic performance comparison of monolayer transition metal dichalcogenide MX2(M = Mo, W; X = S, Se, Te) metal-oxide-semiconductor field effect transistors. J. Appl.Phys. 115, 084506 (2014)CrossRefGoogle Scholar
  32. 32.
    D.Y. Qiu, F.H. da Jornada, S.G. Louie, Optical spectrum of MoS2: Many-body effects and diversity of exciton states. Phys. Rev. Lett. 111, 216805 (2013)CrossRefGoogle Scholar
  33. 33.
    K. He, N. Kumar, L. Zhao, Z. Wang, K.F. Mak, H. Zhao, J. Shan, Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett. 113, 026803 (2014)CrossRefGoogle Scholar
  34. 34.
    Z.Y. Zhu, Y.C. Cheng, U. Schwingenschlogl, Giant spin-orbit-induced spin splitting in two-dimensional transitional-metal dichalcogenide semiconductors. Phys. Rev. B 84, 153402 (2011)CrossRefGoogle Scholar
  35. 35.
    N. Haiyan, W. Zilu, W. Wenhui, L. Zheng, L. Yan, C. Qian, H. Daowei, T. Pingheng, M. Feng, W. Xinran, W. Jinlan, N. Zhenhua, Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 8, 5738–5745 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsGuru Nanak Dev UniversityAmritsarIndia
  2. 2.Department of ChemistryGuru Nanak Dev UniversityAmritsarIndia

Personalised recommendations