Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 23, pp 20033–20039 | Cite as

Investigation on luminescence properties of BaY2Si3O10:Er3+/Ho3+–Yb3+ for optical temperature sensing

  • Hengqing Ge
  • Jia ZhangEmail author


To develop new upconversion (UC) phosphors for optical temperature sensing, the Er3+/Ho3+–Yb3+ doped BaY2Si3O10 (BYS) samples were synthesized by solid-state reaction method. XRD analysis reveals that single-phase samples have been successfully obtained. For the BYS:0.2Yb3+,xEr3+ (0.01 ≤ x ≤ 0.06) phosphors, three emission peaks of Er3+ appear in the visible region. The optimal Er3+ doping concentrations for 552 and 659 nm emissions are different, i.e., x = 0.01 and 0.02 respectively, which can be interpreted by the cross-relaxations between Er3+ ions. For Ho3+–Yb3+ codoped BYS, two strong and one weak emissions of Ho3+ are observed. The emission intensity of Ho3+ increases first and then decreases with increasing Ho3+ concentration. By investigating the temperature-dependent luminescence, it has been found that the different emission peaks in intensity show different changes with temperature, which implies both the thermally-coupled and non-thermally-coupled levels could be used for temperature sensor. The absolute and relative sensitivities by using various emissions of Er3+/Ho3+ in the BYS host were evaluated, which have been improved compared with those of some other Er3+/Ho3+ activated phosphors reported previously.



This work was supported by the National Natural Science Foundation of China (no. 51602117).


  1. 1.
    K. Omri, O.M. Lemine, L.E. Mir, Ceram. Int. 43, 6585–6591 (2017)CrossRefGoogle Scholar
  2. 2.
    D. Geng, H. Lian, M. Shang, Y. Zhang, J. Lin, Inorg. Chem. 53, 2230–2239 (2014)CrossRefGoogle Scholar
  3. 3.
    K. Omri, A. Alyamani, L.E. Mir, Appl. Phys. A 124, 215 (2018)CrossRefGoogle Scholar
  4. 4.
    Z. Ci, Q. Sun, M. Sun, X. Jiang, S. Qin, Y. Wang, J. Mater. Chem. C 2, 5850–5856 (2014)CrossRefGoogle Scholar
  5. 5.
    Y. Tian, Y. Tian, P. Huang, L. Wang, Q. Shi, C. Cui, Chem. Eng. J. 297, 26–34 (2016)CrossRefGoogle Scholar
  6. 6.
    D. Jaque, F. Vetrone, Nanoscale 4, 4301–4326 (2012)CrossRefGoogle Scholar
  7. 7.
    Y. Qi, S. Li, Q. Min, W. Lu, X. Xu, D. Zhou, J. Qiu, L. Wang, X. Yu, J. Alloys Compd. 742, 497–503 (2018)CrossRefGoogle Scholar
  8. 8.
    Q. Min, W. Bian, Y. Qi, W. Lu, X. Yu, X. Xu, D. Zhou, J. Qiu, J. Alloys Compd. 728, 1037–1042 (2017)CrossRefGoogle Scholar
  9. 9.
    W. Xu, H. Zhao, Z.G. Zhang, W.W. Cao, Sens. Actuators B Chem. 178, 520–524 (2013)CrossRefGoogle Scholar
  10. 10.
    Z. Boruc, M. Kaczkan, B. Fetlinski, S. Turczynski, M. Malinowski, Opt. Lett. 37, 5214–5216 (2012)CrossRefGoogle Scholar
  11. 11.
    J. Wei, H. Wei, X. Ji, S. Ren, H. Dai, L. Cheng, J. Zhang, J. Mater. Sci. Mater. El. 29, 12061–12066 (2018)CrossRefGoogle Scholar
  12. 12.
    L. Han, C. Guo, Z. Ci, C. Wang, Y. Wang, Y. Huang, Chem. Eng. J. 312, 204–219 (2017)CrossRefGoogle Scholar
  13. 13.
    J. Zhang, X. Jiang, Z. Hua, Ind. Eng. Chem. Res. 57, 7507–7515 (2018)CrossRefGoogle Scholar
  14. 14.
    D.Y. Wang, N. Kodama, J. Solid State Chem. 182, 2219–2224 (2009)CrossRefGoogle Scholar
  15. 15.
    C. Li, J. Dai, D. Deng, S. Xu, Optik 127, 2715–2719 (2016)CrossRefGoogle Scholar
  16. 16.
    O.A. Savchuk, J.J. Carvajal, C. Cascales, M. Aguilo, F. Díaz, ACS Appl. Mater. Interfaces 8, 7266–7273 (2016)CrossRefGoogle Scholar
  17. 17.
    J. Cao, J. Zhang, X. Li, Appl. Opt. 57, 1345–1350 (2018)CrossRefGoogle Scholar
  18. 18.
    X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, H.J. Seo, Sci. Rep. 7, 43383 (2017)CrossRefGoogle Scholar
  19. 19.
    Z. Xia, Y. Liang, D. Yu, M. Zhang, W. Huang, M. Tong, J. Wu, J. Zhao, Opt. Laser Technol. 56, 387–392 (2014)CrossRefGoogle Scholar
  20. 20.
    J. Zhou, Z. Xia, Opt. Mater. 53, 116–122 (2016)CrossRefGoogle Scholar
  21. 21.
    W.-R. Liu, C.C. Lin, Y.-C. Chiu, Y.-T. Yeh, S.-M. Jang, R.-S. Liu, B.-M. Cheng, Opt. Express 17, 18103–18109 (2009)CrossRefGoogle Scholar
  22. 22.
    R. Shi, Y. Huang, Y. Tao, P. Dorenbos, H. Ni, H. Liang, Inorg. Chem. 57, 8414–8421 (2018)CrossRefGoogle Scholar
  23. 23.
    K. Omri, L.E. Mir, Superlatt. Microstruct. 70, 24–32 (2014)CrossRefGoogle Scholar
  24. 24.
    F. Zhang, G. Li, W. Zhang, Y. Yan, Inorg. Chem. 54, 7325–7334 (2015)CrossRefGoogle Scholar
  25. 25.
    H. Yu, S. Li, Y. Qi, W. Lu, X. Yu, X. Xu, J. Qiu, J. Lumin. 194, 433–439 (2018)CrossRefGoogle Scholar
  26. 26.
    X. Chai, J. Li, X. Wang, Y. Li, X. Yao, Opt. Express 24, 22438–22447 (2016)CrossRefGoogle Scholar
  27. 27.
    H. Suo, C. Guo, T. Li, J. Phys. Chem. C 120, 2914–2924 (2016)CrossRefGoogle Scholar
  28. 28.
    J. Zhang, B. Ji, G. Chen, Z. Hua, Inorg. Chem. 57, 5038–5047 (2018)CrossRefGoogle Scholar
  29. 29.
    X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, X. Yan, RSC Adv. 5, 86219–86236 (2015)CrossRefGoogle Scholar
  30. 30.
    A. Pandey, V.K. Raib, V. Kumara, V. Kumar, H.C. Swart, Sensor. Actuat. B Chem. 209, 352–358 (2015)CrossRefGoogle Scholar
  31. 31.
    S. Jiang, P. Zeng, L. Liao, S. Tian, H. Guo, Y. Chen, C. Duan, M. Yin, J. Alloys Compd. 617, 538–541 (2014)CrossRefGoogle Scholar
  32. 32.
    P. Du, J.S. Yu, Ceram. Int. 41, 6710–6714 (2015)CrossRefGoogle Scholar
  33. 33.
    A. Pandey, V.K. Rai, Dalton Trans. 42, 11005–11011 (2013)CrossRefGoogle Scholar
  34. 34.
    L. Han, H. Yao, S. Miao, S. Wang, J. Zhao, T. Sun, C. Guo, Z. Ci, C. Wang, J. Lumin. 197, 360–369 (2018)CrossRefGoogle Scholar
  35. 35.
    J. Zhang, Z. Hua, J. Lumin. 201, 217–223 (2018)CrossRefGoogle Scholar
  36. 36.
    L.W. Yang, H.L. Han, Y.Y. Zhang, J.X. Zhong, J. Phys. Chem. C 113, 18995–18999 (2009)CrossRefGoogle Scholar
  37. 37.
    N.Q. Wang, X. Zhao, C.M. Li, E.Y.B. Pun, H. Lin, J. Lumin. 130, 1044–1047 (2010)CrossRefGoogle Scholar
  38. 38.
    J. Zhang, Y. Wang, L. Guo, P. Dong, Dalton Trans. 42, 3542–3551 (2013)CrossRefGoogle Scholar
  39. 39.
    J. Zhang, G. Chen, Z. Hua, Opt. Mater. Express 7, 2084–2089 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics Department and Jiangsu Key Laboratory of Modern Measurement Technology and IntelligenceHuaiyin Normal UniversityHuai’anChina

Personalised recommendations