Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 23, pp 20017–20032 | Cite as

Microstructure, dielectric and ferroelectric properties of (1−x) BaTiO3xBiYbO3 ceramics fabricated by conventional and microwave sintering methods

  • Gang ChenEmail author
  • Xiaodong Peng
  • Chunlin Fu
  • Wei Cai
  • Rongli Gao
  • Peigeng Fan
  • Xiaoya Zhang
  • Xin Yi
  • Cong Ji
  • Hongqi Yang
  • Hualei Yong


(1−x) BaTiO3xBiYbO3 (abbreviated as (1−x) BT−xBY, x = 0, 0.03, 0.06 and 0.09) ferroelectric ceramics have been fabricated by conventional sintering (CS) and microwave sintering (MWS) methods. The microstructure, dielectric and ferroelectric properties of (1−x) BT–xBY ceramics have been investigated systematically. X-ray diffraction patterns indicate all samples possess single perovskite phase and the crystal structure transforms from tetragonal to pseudo-cubic phase with increasing x. It can be also found that denser microstructure and finer grains can be obtained by MWS compared to CS as indicated by scanning electron microscopy. Dielectric measurements reveal that the addition of BY can lead to an obvious relaxation behavior in all samples, and the relaxation characteristics of MWS samples are stronger than those of CS samples. Moreover, the dielectric constant decreases with increasing BY content and the temperature stability and frequency stability of dielectric properties can be enhanced by using MWS method and addition of BY. PE hysteresis loops become slimmer with the increase of BY content, and the ferroelectric properties of MWS samples are similar to those of CS samples. The leakage current of MWS sample is smaller than that of CS sample from JE curve. The energy storage efficiency (η) increases with increasing BY content, while the energy storage density (U) increases and then decreases, Umax is obtained at x = 0.06. These results demonstrate that MWS technique and moderate BY content are effective methods to prepare materials for energy storage application.



This work was supported by the Chongqing Research Program of Basic Research and Frontier Technology (Grant No. CSTC2018jcyjAX0416, CSTC2016jcyjA0175, CSTC2016jcyjA0349, CSTC2015jcyjA50003, CSTC2015jcyjA50015); Excellent Talent Project in University of Chongqing (Grant No. 2017-35); the Science and Technology Innovation Project of Social Undertakings and People’s Livelihood Guarantee of Chongqing (Grant No. CSTC2017shmsA0192) and the Program for Innovation Teams in University of Chongqing, China (Grant No. CXTDX201601032).

Compliance with ethical standards

Conflict of interest

We have no conflicts of interest to disclose, and manuscript is approved by all authors and the institutes for publication of this article.


  1. 1.
    Z. Song, S.J. Zhang, H.X. Liu, H. Hao, M.H. Cao, Q. Li, Q. Wang, Z.H. Yao, Z.J. Wang, M.T. Lanagan, Improved energy storage properties accompanied by enhanced interface polarization in annealed microwave-sintered BST. J. Am. Ceram. Soc. 98, 3212–3222 (2015)CrossRefGoogle Scholar
  2. 2.
    A. Michaela, N. Beuerlein, T.M. Kumar, H. Usher, B. James, N. Shaklee, I.M. Raengthon, D.P. Reaney, J.L. Cann, G.L. Jones, Brennecka, Current understanding of structure–processing–property relationships in BaTiO3–Bi (M) O3 dielectrics. J. Am. Ceram. Soc. 99, 2849–2870 (2016)CrossRefGoogle Scholar
  3. 3.
    N. Kumar, D.P. Cann, Tailoring transport properties through nonstoichiometry in BaTiO3–BiScO3 and SrTiO3–Bi (Zn1/2Ti1/2) O3 for capacitor applications. J. Mater. Sci. 51, 9404–9414 (2016)CrossRefGoogle Scholar
  4. 4.
    H. Ogihara, C.A. Randall, S. Trolier-Mckinstry, Weakly coupled relaxor behavior of BaTiO3–BiScO3 ceramics. J. Am. Ceram. Soc. 92, 110–118 (2009)CrossRefGoogle Scholar
  5. 5.
    Y. Wang, Y.P. Pu, X. Li, H.Y. Zheng, Z.Y. Gao, Evolution from ferroelectric to diffused ferroelectric, and relaxor ferroelectric in BaTiO3–BiFeO3 solid solutions. Mater. Chem. Phys. 183, 247–253 (2016)CrossRefGoogle Scholar
  6. 6.
    M. Liu, H. Hao, W. Chen, D. Zhou, M. Appiah, B. Liu, M. Cao, Z. Yao, H. Liu, Z. Zhang, Preparation and dielectric properties of X9R core–shell BaTiO3 ceramics coated by BiAlO3–BaTiO3. Ceram. Int. 42, 379–387 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Liu, H. Hao, W. Chen, D. Zhou, M. Appiah, B. Liu, M. Cao, Z. Yao, H. Liu, Z. Zhang, Temperature stability of dielectric properties for xBiAlO3–(1–x)BaTiO3 ceramics. J. Eur. Ceram. Soc. 35, 2303–2311 (2015)CrossRefGoogle Scholar
  8. 8.
    H. Yu, Z.G. Ye, Dielectric properties and relaxor behavior of a new (1−x) BaTiO3xBiAlO3 solid solution. J. Appl. Phys. 103, 034114 (2008)CrossRefGoogle Scholar
  9. 9.
    S.Y. Zheng, E. Odendo, L.J. Liu, D.P. Shi, Y.M. Huang, L.L. Fan, J. Chen, L. Fang, B. Elouadi, Electrostrictive and relaxor ferroelectric behavior in BiAlO3-modified BaTiO3 lead-free ceramics. J. Appl. Phys. 113, 094102 (2013)CrossRefGoogle Scholar
  10. 10.
    Z. Shen, X. Wang, B. Luo, L. Li, BaTiO3–BiYbO3 perovskite materials for energy storage application. J. Mater. Chem. A 3, 18146–18153 (2015)CrossRefGoogle Scholar
  11. 11.
    T. Strathdee, L. Luisman, A. Feteira, K. Reichmann, Ferroelectric-to-relaxor crossover in (1−x) BaTiO3x BiYbO3 (0 ≤ x ≤ 0.08) ceramics. J. Am. Ceram. Soc. 94, 2292–2295 (2011)CrossRefGoogle Scholar
  12. 12.
    Q.Y. Hu, L. Jin, T. Wang, C.C. Li, Z. Xing, X.Y. Wei, Dielectric and temperature stable energy storage properties of 0.88BaTiO3–0.12Bi(Mg1/2Ti1/2)O3 bulk ceramics. J. Alloy Comp. 640, 416–420 (2015)CrossRefGoogle Scholar
  13. 13.
    Y.J. Wu, Y.H. Huang, N. Wang, J. Li, M.S. Fu, X.M. Chen, Effects of phase constitution and microstructure on energy storage properties of barium strontium titanate ceramics. J. Eur. Ceram. Soc. 37, 2099–2104 (2017)CrossRefGoogle Scholar
  14. 14.
    Y.P. Pu, L. Zhang, M.T. Yao, W.Y. Ge, M. Chen, Improved energy storage properties of microwave sintered 0.475BNT–0.525BCTZ–x wt% MgO ceramics. Mater. Lett. 189, 232–235 (2017)CrossRefGoogle Scholar
  15. 15.
    R. Hayati, M.A. Bahrevar, T. Ebadzadeh, V. Rojas, N. Novak, J. Koruza, Effects of Bi2O3 additive on sintering process and dielectric, ferroelectric, and piezoelectric properties of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoceramics. J. Eur. Ceram. Soc. 36, 3391–3400 (2016)CrossRefGoogle Scholar
  16. 16.
    P. Gao, Y.P. Pu, Y.R. Wu, P. Li, A comparative study on positive temperature coefficient effect of BaTiO3–K0.5Bi0.5TiO3 ceramics by conventional and microwave sintering. Ceram. Int. 40, 637–642 (2014)CrossRefGoogle Scholar
  17. 17.
    S. Hajra, S. Sahoo, M. De, P.K. Rout, H.S. Tewari, R.N.P. Choudhary, Structural and electrical characteristics of barium modified bismuth-sodium titanate (Bi0.49Na0.49Ba0.02)TiO3. J. Mater. Sci. 29, 1463–1472 (2018)Google Scholar
  18. 18.
    S. Mahajan, O.P. Thakur, D.K. Bhattacharya, K. Sreenivas, A comparative study of Ba0.95Ca0.05Zr0.25Ti0.75O3 relaxor ceramics prepared by conventional and microwave sintering techniques. Mater. Chem. Phys. 112, 858–862 (2008)CrossRefGoogle Scholar
  19. 19.
    M. Zhang, X.Y. Zhang, X.W. Qi, Y. Lia, L. Bao, Y.H. Gu, Effects of sintering temperature and composition on dielectric, ferroelectric, and magnetoelectric properties of BaTiO3–BiFeO3 solid solutions. Ceram. Int. 43, 16957–16964 (2017)CrossRefGoogle Scholar
  20. 20.
    H. Ghayour, M. Abdellahi, A brief review of the effect of grain size variation on the electrical properties of BaTiO3-based ceramics. Powder Technol. 292, 84–93 (2016)CrossRefGoogle Scholar
  21. 21.
    X.G. Tang, J. Wang, X.X. Wang, H.L.W. Chan, Effects of grain size on the dielectric properties and tunabilities of sol–gel derived Ba(Zr0.2Ti0.8)O3 ceramics. Solid State Commun. 131, 163–168 (2004)CrossRefGoogle Scholar
  22. 22.
    Y. Huan, X.H. Wang, J. Fang, L.T. Li, Grain size effect on piezoelectric and ferroelectric properties of BaTiO3 ceramics. J. Eur. Ceram. Soc. 34, 1445–1448 (2014)CrossRefGoogle Scholar
  23. 23.
    G. Chen, X.D. Peng, C.L. Fu, W. Cai, R.L. Gao, P.G. Fan, X. Yi, H.Q. Yang, C. Ji, H.L. Yong, Effects of sintering method and BiFeO3 dopant on the dielectric and ferroelectric properties of BaTiO3–BiYbO3 based solid solution ceramics. Ceram. Int. 44, 16880–16889 (2018)CrossRefGoogle Scholar
  24. 24.
    F. Zhang, L. Zhang, X. Guo, S. Yang, Q. Tian, S. Fan, The effect of sintering atmospheres on the properties of CSBT-0.15 ferroelectric ceramics. Ceram. Int. 44, 13502–13506 (2018)CrossRefGoogle Scholar
  25. 25.
    A. Kupec, H. Ur, R.C. Frunza, E. Tchernychova, B. Mali, Microstructure-dependent leakage-current properties of solution-derived (K0.5Na0.5)NbO3 thin films. J. Eur. Ceram. Soc. 35, 3507–3511 (2015)CrossRefGoogle Scholar
  26. 26.
    H. Borkar, V. Rao, M. Tomar, V. Gupta, A. Kumar, Near room temperature bismuth and lithium co-substituted BaTiO3 relaxor ferroelectrics family. J. Alloys Compd. 737, 821–828 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Gang Chen
    • 1
    • 2
    Email author
  • Xiaodong Peng
    • 2
  • Chunlin Fu
    • 1
  • Wei Cai
    • 1
  • Rongli Gao
    • 1
  • Peigeng Fan
    • 1
  • Xiaoya Zhang
    • 1
  • Xin Yi
    • 1
  • Cong Ji
    • 1
  • Hongqi Yang
    • 1
  • Hualei Yong
    • 1
  1. 1.School of Metallurgy and Materials EngineeringChongqing University of Science and TechnologyChongqingPeople’s Republic of China
  2. 2.College of Materials Science and EngineeringChongqing UniversityChongqingPeople’s Republic of China

Personalised recommendations