Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 23, pp 20003–20009 | Cite as

Preparation and characterization of free-standing BiI3 single-crystal flakes for X-ray detection application

  • Hui SunEmail author
  • Xinghua Zhu
  • Peihua Wangyang
  • Xiuying Gao
  • Shifu Zhu
  • Beijun ZhaoEmail author


Free-standing BiI3 single-crystal flakes with a rhombohedral appearance and 10–100 µm in thickness were prepared by using physical vapor transport method. The (00l) (l = 3, 6, 9, 12) planes of the as-grown crystal present a distribution of layered structure and approximatively atomically smooth surface with 1.3–1.7 nm step height and roughness average 0.38–0.65 nm. Both planar and coplanar electrode configuration devices for X-ray detection were fabricated with the as-grown BiI3 single crystals and the dark resistivity 5.8–6.4 × 1011 Ω cm and 1.2–1.8 × 1011 Ω cm at room temperature were obtained, respectively. A low dark current or high resistivity for planar device is on account of carrier scattering from the I–Bi–I interlayer van der Waals bonding interface. A high net photocurrent and good sensitivity 1.22–1.36 × 104 µC/Gyair/cm2 under X-ray excitation were also obtained with planar device owing to the uniform electric field distribution and high charge collection efficiency.



This work was supported by the NSFC (No. 11675029) and Science and Technology Research Fund of Sichuan Province (Nos. 2016FZ0018 and 2018JY0513).


  1. 1.
    A.T. Lintereur, W. Qiu, J.C. Nino, J. Baciak, Nucl. Instrum. Methods Phys. Res. A 652, 166–169 (2011). CrossRefGoogle Scholar
  2. 2.
    H.S. Han, M. Hong, S.S. Gokhale, S.B. Sinnott, K. Jordan, J.E. Baciak, J.C. Nino, J. Phys. Chem. C 118, 3244–3250 (2014). CrossRefGoogle Scholar
  3. 3.
    S.S. Gokhale, H. Han, J.E. Baciak, J.C. Nino, K.A. Jordan, Radiat. Meas. 74, 47–52 (2015). CrossRefGoogle Scholar
  4. 4.
    S.S. Gokhale, H. Han, O. Pelaez, J.E. Baciak, J.C. Nino, K.A. Jordan, Radiat. Meas. 91, 1–8 (2016). CrossRefGoogle Scholar
  5. 5.
    T. Saito, T. Iwasaki, S. Kurosawa, A. Yoshikawa, T. Den, Nucl. Instrum. Methods Phys. Res. A 806, 395–400 (2016). CrossRefGoogle Scholar
  6. 6.
    M. Matsumoto, K. Hitomi, T. Shoji, Y. Hiratate, IEEE Trans. Nucl. Sci. 49, 2517–2520 (2002). CrossRefGoogle Scholar
  7. 7.
    S.K. Chaudhuri, K. Nguyen, R.O. Pak, L. Matei, V. Buliga, M. Groza, A. Burger, K.C. Mandal, IEEE Trans. Nucl. Sci. 61, 793–798 (2014). CrossRefGoogle Scholar
  8. 8.
    A. Datta, D. Moed, P. Becla, M. Overholt, S. Motakef, J. Cryst. Growth 452, 49–53 (2016). CrossRefGoogle Scholar
  9. 9.
    T. Hayashi, M. Kinpara, J.F. Wang, K. Mimura, M. Isshiki, J. Cryst. Growth 310, 47–50 (2008). CrossRefGoogle Scholar
  10. 10.
    H. Sun, X. Zhu, D. Yang, Z. He, S. Zhu, B. Zhao, J. Semicond. 33, 053002 (2012)CrossRefGoogle Scholar
  11. 11.
    J.C. Park, P.J. Jeon, J.S. Kim, S. Im, Adv. Healthc. Mater. 4, 51–57 (2015). CrossRefGoogle Scholar
  12. 12.
    M.Z. Kabir, S.O. Kasap, Springer Handbook of Electronic and photonic Materials, Chap. 45, 2nd edn (Springer, New York, 2017), p. 1136Google Scholar
  13. 13.
    D. Nason, L. Keller, J. Cryst. Growth 156, 221–226 (1995). CrossRefGoogle Scholar
  14. 14.
    A. Owens, A. Peacock, Nucl. Instrum. Methods Phys. Res. A 531, 18–37 (2004). CrossRefGoogle Scholar
  15. 15.
    J. Li, X. Guan, C. Wang, H.C. Cheng, R. Ai, K. Yao, P. Chen, Z. Zhang, X. Duan, X. Duan, Small (2017). CrossRefGoogle Scholar
  16. 16.
    N.J. Podraza, W. Qiu, B.B. Hinojosa, M.A. Motyka, S.R. Phillpot, J.E. Baciak, S. Trolier-McKinstry, J.C. Nino, J. Appl. Phys. 114, 033110 (2013)CrossRefGoogle Scholar
  17. 17.
    S. Kasap, J.B. Frey, G. Belev, O. Tousignant, H. Mani, J. Greenspan, L. Laperriere, O. Bubon, A. Reznik, G. DeCrescenzo, K.S. Karim, J.A. Rowlands, Sensors 11(5), 5112–5157 (2011). CrossRefGoogle Scholar
  18. 18.
    X.H. Zhu, H. Sun, D.Y. Yang, P.H. Wangyang, X.Y. Gao, J. Mater. Sci.: Mater. Electron. 27, 1–6 (2016). CrossRefGoogle Scholar
  19. 19.
    M.Z. Kabir, S.O. Kasap, J. Vac. Sci. Technol. A 20, 1082–1086 (2002). CrossRefGoogle Scholar
  20. 20.
    M.Z. Kabir, S.O. Kasap, Appl. Phys. Lett. 80, 1664–1666 (2002). CrossRefGoogle Scholar
  21. 21.
    S. Yakunin, M. Sytnyk, D. Kriegner, S. Shrestha, M. Richter, G.J. Matt, H. Azimi, C.J. Brabec, J. Stangl, M.V. Kovalenko, W. Heiss, Nat. Photonics 9, 444–449 (2015). CrossRefGoogle Scholar
  22. 22.
    W. Wei, Y. Zhang, Q. Xu, H.T. Wei, Y.J. Fang, Q. Wang, Y.H. Deng, T. Li, A. Gruverman, L. Cao, J.S. Huang, Nat. Photonics 11, 315–321 (2017). CrossRefGoogle Scholar
  23. 23.
    H.T. Wei, Y.J. Fang, P. Mulligan, W. Chuirazzi, H.H. Fang, C.C. Wang, B.R. Ecker, Y.L. Gao, M.A. Loi, L. Cao, J.S. Huang, Nat. Photonics 10, 333–339 (2016). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials ScienceSichuan UniversityChengduPeople’s Republic of China
  2. 2.College of Optoelectronic TechnologyChengdu University of Information TechnologyChengduPeople’s Republic of China
  3. 3.School of Intelligent ManufacturingSichuan University of Arts and ScienceDazhouPeople’s Republic of China

Personalised recommendations