Advertisement

Synthesis and characterization of Sm3+ activated La1−xGdxPO4 phosphors for white LEDs applications

  • Avi Mathur
  • Pramod Halappa
  • Chikkadasappa Shivakumara
Article
  • 26 Downloads

Abstract

A series of orange-red light emitting Sm3+ activated La1−xGdxPO4 (0.00 ≤ × ≤ 1.00) phosphors were synthesized by the solid-state method. The structural parameters were confirmed by the Rietveld refinement method based on powder X-Ray diffraction (XRD) analysis. All the compounds crystallized in the monazite monoclinic structure with space group P 1 21/n 1 (no. 14). The photoluminescence spectra of La0.95−xGdxPO4:Sm3+ phosphors were measured at the excitation wavelength of 400 nm, exhibited characteristic emission peaks for Sm3+ at 560, 597, and 643 nm. The purely magnetic dipole allowed transition (4G5/2 → 6H5/2) at 560 nm and partly magnetic dipole transition (4G5/26H7/2) at 597 nm, responsible for orange-red light, dominated the emission spectra. In contrast to the magnetic dipole transitions, the electric dipole transition (4G5/2 → 6H9/2) was found to be relatively less intense confirming high symmetrical crystal environment around Sm3+ in the host lattice. However, with subsequent substitution of Gd3+ at the lanthanide site in the host lattice, the crystal field suffered distortion and thus, influenced the photometric properties. From experimental results, it was evident that these phosphors have suitable Commission International de l’Eclairage (CIE), color correlated temperature (CCT) parameters, appreciable lifetime, and excellent color purity with respect to other reported rare earth ion doped orange-red phosphors. Further, these results could help in the improvisation of their use in optoelectronics especially white LEDs, photovoltaic cells and other strategic applications.

Notes

Acknowledgements

Avi Mathur would like to express gratitude towards his home institution Centre for Converging Technologies, University of Rajasthan, Jaipur – 302 004, India for allowing him to carry out M. Tech dissertation at Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore – 560 012, India. The authors acknowledge the Chemical Science Division, Indian Institute of Science for extending the Time resolved fluorescence spectrometer facility. One of the authors, Pramod Halappa is thankful to Council of Scientific and Industrial Research (CSIR), New Delhi, India for felicitating with CSIR-SRF.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10854_2018_125_MOESM1_ESM.doc (3.7 mb)
Supplementary material 1 (DOC 3786 KB)

References

  1. 1.
    Z.-H. Ju, R.-P. Wei, J.-X. Ma, C.-R. Pang, W.-S. Liu, A novel orange emissive phosphor SrWO4: Sm3+ for white light-emitting diodes. J. Alloy Compd. 507, 133–136 (2010)CrossRefGoogle Scholar
  2. 2.
    P.F. Smet, A.B. Parmentier, D. Poelman, Selecting conversion phosphors for white light-emitting diodes. J. Electrochem. Soc. 158, R37–R54 (2011)CrossRefGoogle Scholar
  3. 3.
    R. Cao, C. Cao, X. Yu, W. Li, J. Qiu, Photoluminescence of Sr2P2O7: Sm3+ phosphor as reddish orange emission for white light-emitting diodes. Int. J. Appl. Ceram. Technol. 12, 755–759 (2015)CrossRefGoogle Scholar
  4. 4.
    K. Shinde, S. Dhoble, Europium-activated orthophosphate phosphors for energy-efficient solid-state lighting: a review. Crit. Rev. Solid State Mater. Sci. 39, 459–479 (2014)CrossRefGoogle Scholar
  5. 5.
    C. Lv, W. Di, Z. Liu, K. Zheng, W. Qin, Synthesis of porous upconverting luminescence α-NaYF4:Ln3+ microspheres and their potential applications as carriers. Dalton Trans. 43, 3681–3690 (2014)CrossRefGoogle Scholar
  6. 6.
    S.K. Gupta, P.S. Ghosh, M. Sahu, K. Bhattacharyya, R. Tewari, V. Natarajan, Intense red emitting monoclinic LaPO4:Eu3+ nanoparticles: host-dopant energy transfer dynamics and photoluminescence properties. RSC Adv. 5, 58832–58842 (2015)CrossRefGoogle Scholar
  7. 7.
    Y. Weifeng, L. Xiyan, C. Dongzhi, Z. Hongjie, L. Xiaogang, Lanthanide-doped upconversion materials: emerging applications for photovoltaics and photocatalysis. Nanotechnology 25, 482001 (2014)CrossRefGoogle Scholar
  8. 8.
    E. Hemmer, M. Quintanilla, F. Légaré, F. Vetrone, Temperature-induced energy transfer in dye-conjugated upconverting nanoparticles: a new candidate for nanothermometry. Chem. Mater. 27, 235–244 (2015)CrossRefGoogle Scholar
  9. 9.
    D. Xu, Y. Zhang, D. Zhang, S. Yang, Structural, luminescence and magnetic properties of Yb3+-Er3+ codoped Gd2O3 hierarchical architectures. CrystEngComm 17, 1106–1114 (2015)CrossRefGoogle Scholar
  10. 10.
    D. Che, X. Zhu, P. Liu, Y. Duan, H. Wang, Q. Zhang, Y. Li, A facile aqueous strategy for the synthesis of high-brightness LaPO4:Eu nanocrystals via controlling the nucleation and growth process. J. Lumin. 153, 369–374 (2014)CrossRefGoogle Scholar
  11. 11.
    N. Huittinen, Y. Arinicheva, M. Schmidt, S. Neumeier, T. Stumpf, Using Eu3+ as an atomic probe to investigate the local environment in LaPO4–GdPO4 monazite end-members. J. Colloid Interface Sci. 483, 139–145 (2016)CrossRefGoogle Scholar
  12. 12.
    N. Huittinen, Y. Arinicheva, P. Kowalski, V. Vinograd, S. Neumeier, D. Bosbach, Probing structural homogeneity of La1−xGdxPO4 monazite-type solid solutions by combined spectroscopic and computational studies. J. Nucl. Mater. 486, 148–157 (2017)CrossRefGoogle Scholar
  13. 13.
    B. Yan, X. Xiao, Hydrothermal synthesis, microstructure and photoluminescence of Eu3+-doped mixed rare earth nano-orthophosphates. Nanoscale Res. Lett. 5, 1962 (2010)CrossRefGoogle Scholar
  14. 14.
    X. Wu, H. You, H. Cui, X. Zeng, G. Hong, C.-H. Kim, C.-H. Pyun, B.-Y. Yu, C.-H. Park, Vacuum ultraviolet optical properties of (La,Gd)PO4:RE3+ (RE=Eu, Tb). Mater. Res. Bull. 37, 1531–1538 (2002)CrossRefGoogle Scholar
  15. 15.
    K. Park, K.Y. Kim, VUV photoluminescence of La1−xGdxPO4:Tb3+ green phosphors synthesized by ultrasonic spray pyrolysis. Met. Mater. Int. 17, 797–800 (2011)CrossRefGoogle Scholar
  16. 16.
    H. Lai, A. Bao, Y. Yang, Y. Tao, H. Yang, Correlation of photoluminescence of (La, Ln)PO4: Eu3+ (Ln=Gd and Y) phosphors with their crystal structures. J. Nanopart. Res. 10, 1355 (2008)CrossRefGoogle Scholar
  17. 17.
    Y. Wang, C. Wu, J. Wei, Hydrothermal synthesis and luminescent properties of LnPO4: Tb,Bi (Ln=La,Gd) phosphors under UV/VUV excitation. J. Lumin. 126, 503–507 (2007)CrossRefGoogle Scholar
  18. 18.
    S. Neumeier, P. Kegler, Y. Arinicheva, A. Shelyug, P.M. Kowalski, C. Schreinemachers, A. Navrotsky, D. Bosbach, Thermochemistry of La1−xLnxPO4-monazites (Ln=Gd, Eu). J. Chem. Thermodyn. 105, 396–403 (2017)CrossRefGoogle Scholar
  19. 19.
    Z. Zhang, Y. Peng, X. Shen, J. Zhang, S. Song, Q. Lian, Enhanced novel orange red emission in LiSr4–x(BO3)3: xSm3+ by K+. J. Mater. Sci. 49, 2534–2541 (2014)CrossRefGoogle Scholar
  20. 20.
    S. Bishnoi, G. Swati, P. Singh, V. Jaiswal, M.K. Sahu, V. Gupta, N. Vijayan, D. Haranath, Appearance of efficient luminescence energy transfer in doped orthovanadate nanocrystals, J. Appl. Crystallogr. 50, 787–794 (2017)CrossRefGoogle Scholar
  21. 21.
    K. Li, H. Lian, M. Shang, J. Lin, A novel greenish yellow-orange red Ba3Y4O9:Bi3+,Eu3+ phosphor with efficient energy transfer for UV-LEDs. Dalton Trans. 44, 20542–20550 (2015)CrossRefGoogle Scholar
  22. 22.
    V.M. Gurevich, M.A. Ryumin, A.V. Tyurin, L.N. Komissarova, Heat capacity and thermodynamic properties of GdPO4 in the temperature range 0–1600 K. Geochem. Int. 50, 702–710 (2012)CrossRefGoogle Scholar
  23. 23.
    Y. Ni, J.M. Hughes, A.N. Mariano, Crystal chemistry of the monazite and xenotime structures. Am. Miner. 80, 21–26 (1995)CrossRefGoogle Scholar
  24. 24.
    D.F. Mullica, D.A. Grossie, L.A. Boatner, Coordination geometry and structural determinations of SmPO4,EuPO4 and GdPO4. Inorg. Chim. Acta 109, 105–110 (1985)CrossRefGoogle Scholar
  25. 25.
    D.F. Mullica, W.O. Milligan, D.A. Grossie, G.W. Beall, L.A. Boatner, Ninefold coordination LaPO4: pentagonal interpenetrating tetrahedral polyhedron. Inorg. Chim. Acta 95, 231–236 (1984)CrossRefGoogle Scholar
  26. 26.
    M. Kizilyalli, A.J.E. Welch, Crystal data for lanthanide orthophosphates. J. Appl. Crystallogr. 9, 413–414 (1976)CrossRefGoogle Scholar
  27. 27.
    H. Chen, Y. Ni, X. Ma, J. Hong, Pure monoclinic La1−xEuxPO4 micro-/nano-structures: Fast synthesis, shape evolution and optical properties. J. Colloid Interface Sci. 428, 141–145 (2014)CrossRefGoogle Scholar
  28. 28.
    E.Y. Borovikova, V.S. Kurazhkovskaya, D.M. Bykov, A.I. Orlova, Infrared spectroscopy and the structure of La0.33Zr2(PO4)3-Yb0.33Zr2(PO4)3 solid solutions. J. Struct. Chem. 51, 40–44 (2010)CrossRefGoogle Scholar
  29. 29.
    A.A. Ansari, J.P. Labis, M. Aslam Manthrammel, Designing of luminescent GdPO4:Eu@LaPO4@SiO2 core/shell nanorods: Synthesis, structural and luminescence properties. Solid State Sci. 71, 117–122 (2017)CrossRefGoogle Scholar
  30. 30.
    J. Cybinska, M. Guzik, C. Lorbeer, E. Zych, Y. Guyot, G. Boulon, A.V. Mudring, Design of LaPO4: Nd3+ materials by using ionic liquids. Opt. Mater. 63, 76–87 (2017)CrossRefGoogle Scholar
  31. 31.
    H. Fuks, S. Kaczmarek, M. Bosacka, EPR and IR investigations of some chromium (III) phosphate (V) compounds. Rev. Adv. Mater. Sci 23, 57–63 (2010)Google Scholar
  32. 32.
    S. Sisira, A. Dinu, T. Kukku, G. Vimal, P.M. Kamal, P.R. Biju, N.V. Unnikrishnan, J. Cyriac, Microstructural characterization and optical properties of green emitting hexagonal and monoclinic CePO4:Tb3+ nanocrystals. Mater. Res. Express 4, 025010 (2017)CrossRefGoogle Scholar
  33. 33.
    Z.J. Zhang, X.D. Zheng, Z.C. Shi, X. Wang, Effect of Sm3+ concentration on the vibrational and luminescent properties of LaPO4, in: Materials Science Forum (Trans Tech Publications Ltd., Zürich, 2016, pp. 482Google Scholar
  34. 34.
    N. Dacheux, V. Brandel, M. Genet, Synthesis and characterization of mixed valence uranium orthophosphate: U(UO2)(PO4)2. ChemInform. (1995).  https://doi.org/10.1002/chin.199542023 CrossRefGoogle Scholar
  35. 35.
    G.M. Begun, G.W. Beall, L.A. Boatner, W.J. Gregor, Raman spectra of the rare earth orthophosphates. J. Raman Spectrosc. 11, 273–278 (1981)CrossRefGoogle Scholar
  36. 36.
    C.C. Santos, E.N. Silva, A.P. Ayala, I. Guedes, P.S. Pizani, C.-K. Loong, L.A. Boatner, Raman investigations of rare earth orthovanadates. J. Appl. Phys. 101, 053511 (2007)CrossRefGoogle Scholar
  37. 37.
    M.S. Wickleder, Inorganic lanthanide compounds with complex anions. Chem. Rev. 102, 2011–2088 (2002)CrossRefGoogle Scholar
  38. 38.
    Y.-C. Li, Y.-H. Chang, Y.-F. Lin, Y.-S. Chang, Y.-J. Lin, Synthesis and luminescent properties of Ln3+ (Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors. J. Alloy Compd. 439, 367–375 (2007)CrossRefGoogle Scholar
  39. 39.
    R. Cao, W. Wang, J. Zhang, Q. Hu, S. Jiang, F. Xiao, Y. Ye, Synthesis and tunable emission properties of CaZr(PO4)2:Mn2+, Sm3+ phosphor. J. Mater. Sci. 28, 582–587 (2017)Google Scholar
  40. 40.
    X. He, L. Zhang, G. Chen, Y. Hang, Crystal growth and spectral properties of Sm:GdVO4. J. Alloy Compd. 467, 366–369 (2009)CrossRefGoogle Scholar
  41. 41.
    T. Manohar, S.C. Prashantha, R. Naik, H. Nagabhushana, H.P. Nagaswarupa, K.S. Anantharaju, K.M. Girish, H.B. Premkumar, A benign approach for tailoring the photometric properties and Judd-Ofelt analysis of LaAlO3:Sm3+ nanophosphors for thermal sensor and WLED applications. Sens. Actuators B 243, 1057–1066 (2017)CrossRefGoogle Scholar
  42. 42.
    R. Cao, G. Quan, Z. Shi, T. Chen, Z. Luo, G. Zheng, Z. Hu, Synthesis and luminescence properties of La2Zr2O7: R (R = Sm3+, Bi3+, Sm3+/Bi3+) phosphor. J. Phys. Chem. Solids 118, 109–113 (2018)CrossRefGoogle Scholar
  43. 43.
    G. Ofelt, Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 37, 511–520 (1962)CrossRefGoogle Scholar
  44. 44.
    P. Halappa, C. Shivakumara, R. Saraf, H. Nagabhushana, Synthesis, structure and photoluminescence properties of Sm3+-doped BiOBr phosphor, AIP Conference Proceedings, 1731 (2016) 140064Google Scholar
  45. 45.
    G. Ramakrishna, H. Nagabhushana, S.C. Prashantha, S.C. Sharma, B.M. Nagabhushana, Role of flux on morphology and luminescence properties of Sm3+ doped Y2SiO5 nanopowders for WLEDs. Spectrochim. Acta A 136, 356–365 (2015)CrossRefGoogle Scholar
  46. 46.
    X. Zou, L. He, D. Tan, F. Lei, N. Jiang, Q. Zheng, D. Lin, C. Xu, Y. Liu, Anneal-induced transformation of phase structure, morphology and luminescence of GdPO4:Sm3+ nanomaterials synthesized by a hydrothermal method. Dalton Trans. 46, 2948–2956 (2017)CrossRefGoogle Scholar
  47. 47.
    G. Phaomei, W.R. Singh, R. Ningthoujam, Solvent effect in monoclinic to hexagonal phase transformation in LaPO4: RE (RE = Dy3+, Sm3+) nanoparticles: photoluminescence study. J. Lumin. 131, 1164–1171 (2011)CrossRefGoogle Scholar
  48. 48.
    C.S. McCamy, Correlated color temperature as an explicit function of chromaticity coordinates. Color Res Appl. 17, 142–144 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Solid State and Structural Chemistry UnitIndian Institute of ScienceBangaloreIndia
  2. 2.Centre for Converging TechnologiesUniversity of RajasthanJaipurIndia

Personalised recommendations