Advertisement

In-situ reduction derived nitrogen doped carbon anchored cobalt nanoparticles as highly capacity and long life lithium ion battery anodes

  • Mingjun Xiao
  • Yanshuang Meng
  • Gongrui Wang
  • Chaoyu Duan
  • Fuliang Zhu
  • Yue Zhang
Article
  • 25 Downloads

Abstract

A novel composite with embedded cobalt nanoparticles in nitrogen doped carbon (Co@NDC) is synthesized by the in-situ reduction of Co(OH)2 using ionic liquid [HMIm]N(CN)2 as carbon precursor. Due to the special structure, this composite can form more stable solid electrolyte interface (SEI) film than cobalt nanoparticles when used as anode. The Co@NDC electrode shows a high discharge capacity of 1322 mAh g−1 after 850 cycles at 0.5 C, and an extremely long cycle life (436 mAh g−1 after 2400 cycles at 5 C). This excellent electrochemical performance can be attributed to the catalytic lithium-carbon reaction of cobalt nanoparticles, high conductivity of the carbon material, and the thin and stable SEI film.

Notes

Acknowledgements

The project was supported by the National Natural Science Foundation of China (Grant Nos. 51364024, 51404124), and the Foundation for Innovation Groups of Basic Research in Gansu Province (No. 1606RJIA322).

Compliance with ethical standards

Conflict of interest

The authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest.

References

  1. 1.
    Y. Zhou, H. Wang, Y. Zeng, C. Li, Y. Shen, J. Chang, Q. Duan, Nitrogen-doped porous carbon/Sn composites as high capacity and long life anode materials for lithium-ion batteries. Mater. Lett. 155, 18–22 (2015)CrossRefGoogle Scholar
  2. 2.
    X.B. Zhong, H.Y. Wang, Z.Z. Yang, B. Jin, Q.C. Jiang, Facile synthesis of mesoporous ZnCo2O4 coated with polypyrrole as an anode material for lithium-ion batteries. J Power Sources 296, 298–304 (2015)CrossRefGoogle Scholar
  3. 3.
    G. Ren, M.N.F. Hoque, X. Pan, J. Warzywoda, Z. Fan, Vertically aligned VO2(B) nanobelt forest and its three-dimensional structure on oriented graphene for energy storage. J. Mater. Chem. A 3, 10787–10794 (2015)CrossRefGoogle Scholar
  4. 4.
    N. Pineda-Aguilar, L.L. Garza-Tovar, E.M. Sánchez-Cervantes, M. Sánchez-Domínguez, Preparation of TiO2(B) by microemulsion mediated hydrothermal method: effect of the precursor and its electrochemical performance. J. Mater. Sci. Mater. Electron. 16, 1–16 (2018)Google Scholar
  5. 5.
    M. Zhang, H. Fan, N. Zhao, H. Peng, X. Ren, W. Wang, H. Li, G. Chen, Y. Zhu, X. Jiang, 3D hierarchical CoWO4/Co3O4 nanowire arrays for asymmetric supercapacitors with high energy density. Chem. Eng. J. 347, 291–300 (2018)CrossRefGoogle Scholar
  6. 6.
    L. Ma, H. Fan, K. Fu, Y. Zhao, Metal–organic framework/layered carbon nitride nano–sandwiches for superior asymmetric supercapacitor. Chemistryselect 1, 3730–3738 (2016)CrossRefGoogle Scholar
  7. 7.
    X. Ren, H. Fan, J. Ma, C. Wang, M. Zhang, N. Zhao, Hierarchical Co3O4/PANI hollow nanocages: synthesis and application for electrode materials of supercapacitors. Appl. Surf. Sci. 441, 194–203 (2018)CrossRefGoogle Scholar
  8. 8.
    G. Girishkumar, B. Mccloskey, A.C. Luntz, S. Swanson, W. Wilcke, Lithium – air battery: promise and challenges. J. Phys. Chem. Lett. 1, 2193–2203 (2010)CrossRefGoogle Scholar
  9. 9.
    R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, D. Aurbach, A review of advanced and practical lithium battery materials. J. Mater. Chem. 21, 9938–9954 (2011)CrossRefGoogle Scholar
  10. 10.
    N.A. Kaskhedikar, J. Maier, Lithium storage in carbon nanostructures. Adv. Mater. 21, 2664–2680 (2010)CrossRefGoogle Scholar
  11. 11.
    Y. Liu, J. Chen, W. Zhang, Z. Ma, G.F. Swiegers, C.O. Too, G.G. Wallace, Nano-Pt modified aligned carbon nanotube arrays are efficient, robust, high surface area electrocatalysts. Chem. Mater. 20, 2603–2605 (2008)CrossRefGoogle Scholar
  12. 12.
    J. Zhang, Y.S. Hu, J.P. Tessonnier, G. Weinberg, J. Maier, R. Schlögl, D.S. Su, CNFs@CNTs: superior carbon for electrochemical energy storage. Adv. Mater. 20, 1450–1455 (2008)CrossRefGoogle Scholar
  13. 13.
    C.L. Li, Q. Sun, G.Y. Jiang, Z.W. Fu, B.M. Wang, Electrochemistry and morphology evolution of carbon micro-net films for rechargeable lithium ion batteries. J. Phys. Chem. C 112, 13782–13788 (2008)CrossRefGoogle Scholar
  14. 14.
    A.L.M. Reddy, A. Srivastava, S.R. Gowda, H. Gullapalli, M. Dubey, P.M. Ajayan, Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4, 6337–6342 (2010)CrossRefGoogle Scholar
  15. 15.
    Y.S. Hu, P. Adelhelm, B. Smarsly, S. thinsp, M. Hore, J. Antonietti, Maier, Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with highrate capability. Adv. Funct. Mater. 17, 1873–1878 (2010)CrossRefGoogle Scholar
  16. 16.
    X. Li, D. Geng, Y. Zhang, X. Meng, R. Li, X. Sun, Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochem. Commun. 13, 822–825 (2011)CrossRefGoogle Scholar
  17. 17.
    J. Fang, H. Fan, M. Li, C. Long, Nitrogen self-doped graphitic carbon nitride as efficient visible light photocatalyst for hydrogen evolution. J. Mater. Chem. A 3, 13819–13826 (2015)CrossRefGoogle Scholar
  18. 18.
    X. Wang, X. Li, L. Zhang, Y. Yoon, P.K. Weber, H. Wang, J. Guo, H. Dai, N-doping of graphene through electrothermal reactions with ammonia. Science 324, 768–771 (2009)CrossRefGoogle Scholar
  19. 19.
    Z. Wang, X. Xiong, L. Qie, Y. Huang, High-performance lithium storage in nitrogen-enriched carbon nanofiber webs derived from polypyrrole. Electrochim. Acta 106, 320–326 (2013)CrossRefGoogle Scholar
  20. 20.
    L. Qie, W.M. Chen, Z.H. Wang, Q.G. Shao, X. Li, L.X. Yuan, X.L. Hu, W.X. Zhang, Y.H. Huang, Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 24, 2047–2050 (2012)CrossRefGoogle Scholar
  21. 21.
    Y.J. Mai, J.P. Tu, C.D. Gu, X.L. Wang, Graphene anchored with nickel nanoparticles as a high-performance anode material for lithium ion batteries. J. Power Sources 209, 1–6 (2012)CrossRefGoogle Scholar
  22. 22.
    H. Qiao, Y. Yu, Z. Xia, J. Zhang, Q. Wei, Hydrothermal synthesis and high electrochemical performance of ordered mesoporous Co/CMK-3 nanocomposites. Ionics 24, 715–721 (2017)CrossRefGoogle Scholar
  23. 23.
    G.C. Li, W. Zhao, Zeolitic imidazolate frameworks derived Co nanoparticles anchored on graphene as superior anode material for lithium ion batteries. J. Alloys Compd. 716, (2017)CrossRefGoogle Scholar
  24. 24.
    X. Shen, W. Jiang, H. Sun, Y. Wang, A. Dong, J. Hu, D. Yang, Ionic liquid assist to prepare Si@N-doped carbon nanoparticles and its high performance in lithium ion batteries. J. Alloys Compd. 691, 178–184 (2017)CrossRefGoogle Scholar
  25. 25.
    Y. Meng, Synthesis of N-doped carbon by microwave-assisited pyrolysis ionic liquid for lithium-ion batteries. Int. J. Electrochem. Sci. 11, 9881–9890 (2016)CrossRefGoogle Scholar
  26. 26.
    L. Zhao, Y.S. Hu, H. Li, Z. Wang, L. Chen, Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv. Mater. 23, 1385–1388 (2011)CrossRefGoogle Scholar
  27. 27.
    X. Wang, F. Wang, L. Wang, M. Li, Y. Wang, B. Chen, Y. Zhu, L. Fu, L. Zha, L. Zhang, An aqueous rechargeable Zn//Co3O4 battery with high energy density and good cycling behavior. Adv. Mater. 28, 4904–4911 (2016)CrossRefGoogle Scholar
  28. 28.
    C. An, M. Wang, W. Li, Q. Deng, Y. Wang, L. Jiao, H. Yuan, Mesoporous Co@N-rich carbon hybrids for a high rate aqueous alkaline battery. Electrochim. Acta 250, 135–142 (2017)CrossRefGoogle Scholar
  29. 29.
    C. Yuan, Y. Long, L. Hou, J. Li, Y. Sun, X. Zhang, L. Shen, X. Lu, S. Xiong, W.L. Xiong, Flexible hybrid paper made of monolayer Co3O4 microsphere arrays on rGO/CNTs and their application in electrochemical capacitors. Adv. Funct. Mater. 22, 2560–2566 (2012)CrossRefGoogle Scholar
  30. 30.
    L. Zhuo, Y. Wu, J. Ming, L. Wang, Y. Yu, X. Zhang, F. Zhao, Facile synthesis of a Co3O4–carbon nanotube composite and its superior performance as an anode material for Li-ion batteries. J. Mater. Chem. A 1, 1141–1147 (2013)CrossRefGoogle Scholar
  31. 31.
    Z. Fan, B. Wang, Y. Xi, X. Xu, M. Li, J. Li, P. Coxon, S. Cheng, G. Gao, C. Xiao, A NiCo2O4 nanosheet-mesoporous carbon composite electrode for enhanced reversible lithium storage. Carbon 99, 633–641 (2016)CrossRefGoogle Scholar
  32. 32.
    X.H. Liu, J.W. Wang, S. Huang, F. Fan, X. Huang, Y. Liu, S. Krylyuk, J. Yoo, S.A. Dayeh, A.V. Davydov, In situ atomic-scale imaging of electrochemical lithiation in silicon. Nat. Nanotechnol. 7, 749–756 (2012)CrossRefGoogle Scholar
  33. 33.
    J.W. Choi, J. Mcdonough, S. Jeong, J.S. Yoo, C.K. Chan, Y. Cui, Stepwise nanopore evolution in one-dimensional nanostructures. Nano Lett. 10, 1409–1413 (2010)CrossRefGoogle Scholar
  34. 34.
    X. Wang, Y. Tang, P. Shi, J. Fan, Q. Xu, Y. Min, Self-evaporating from inside to outside to construct cobalt oxide nanoparticles-embedded nitrogen-doped porous carbon nanofibers for high-performance lithium ion batteries. Chem. Eng. J. 334, 1642–1649 (2017)CrossRefGoogle Scholar
  35. 35.
    Y. Mao, H. Duan, B. Xu, L. Zhang, Y. Hu, C. Zhao, Z. Wang, L. Chen, Y. Yang, Lithium storage in nitrogen-rich mesoporous carbon materials. Energy Environ. Sci. 5, 7950–7955 (2012)CrossRefGoogle Scholar
  36. 36.
    M. Zhou, F. Pu, Z. Wang, S. Guan, Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors. Carbon 68, 185–194 (2014)CrossRefGoogle Scholar
  37. 37.
    Y. Meng, M. Xiao, L. Wang, C. Duan, F. Zhu, Y. Zhang, Microwave modification of N-doped carbon for high performance lithium-ion batteries. J. Electrochem. Soc. 164, A3772–A3776 (2017)CrossRefGoogle Scholar
  38. 38.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, The Raman fingerprint of graphene. Phys. Rev. Lett. 97, 187401–187404 (2006)CrossRefGoogle Scholar
  39. 39.
    N. Mahmood, C. Zhang, F. Liu, J. Zhu, Y. Hou, Hybrid of Co(3)Sn(2)@Co nanoparticles and nitrogen-doped graphene as a lithium ion battery anode. ACS Nano 7, 10307–10318 (2013)CrossRefGoogle Scholar
  40. 40.
    Y. Lou, J. Liang, Y. Peng, J. Chen, Ultra-small Co3O4 nanoparticles-reduced graphene oxide nanocomposite as superior anodes for lithium-ion batteries. Phys. Chem. Chem. Phys. 17, 8885–8893 (2015)CrossRefGoogle Scholar
  41. 41.
    Y. Meng, W. Han, Z. Zhang, F. Zhu, Y. Zhang, D. Wang, LiFePO4 particles coated with N-doped carbon membrane. J. Nanosci. Nanotechnol. 17, 2000–2005 (2017)CrossRefGoogle Scholar
  42. 42.
    G. Huang, F. Zhang, X. Du, Y. Qin, D. Yin, L. Wang, Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano 9, 1592–1599 (2015)CrossRefGoogle Scholar
  43. 43.
    S. Ramesh, Y. Haldorai, A. Sivasamy, H.S. Kim, Nanostructured Co3O4/nitrogen doped carbon nanotube composites for high-performance supercapacitors. Mater. Lett. 206, 39–43 (2017)CrossRefGoogle Scholar
  44. 44.
    Z. Guo, F. Wang, Y. Xia, J. Li, A.G. Tamirat, Y. Liu, L. Wang, Y. Wang, Y. Xia, In situ encapsulation of core–shell-structured Co@Co3O4 into nitrogen-doped carbon polyhedra as a bifunctional catalyst for rechargeable Zn–air batteries. J. Mater. Chem. A 6, 1443–1453 (2017)CrossRefGoogle Scholar
  45. 45.
    K. Zhou, L. Lai, Y. Zhen, Z. Hong, J. Guo, Z. Huang, Rational design of Co3O4/Co/carbon nanocages composites from metal organic frameworks as an advanced lithium-ion battery anode. Chem. Eng. J. 316, 137–145 (2017)CrossRefGoogle Scholar
  46. 46.
    L. Guo, D. Yu, C. Qin, L. Wei, J. Du, Z. Fu, W. Song, W. Feng, Nitrogen-doped porous carbon spheres anchored with Co3O4 nanoparticles as high-performance anode materials for lithium-ion batteries. Electrochim. Acta 187, 234–242 (2016)CrossRefGoogle Scholar
  47. 47.
    M. Du, C. Xu, J. Sun, L. Gao, One step synthesis of Fe2O3/nitrogen-doped graphene composite as anode materials for lithium ion batteries. Electrochim. Acta 80, 302–307 (2012)CrossRefGoogle Scholar
  48. 48.
    W.Y. Wong, W.R.W. Daud, A.B. Mohamad, A.A.H. Kadhum, K.S. Loh, E.H. Majlan, Influence of nitrogen doping on carbon nanotubes towards the structure, composition and oxygen reduction reaction. Int. J. Hydrog. Energy 38, 9421–9430 (2013)CrossRefGoogle Scholar
  49. 49.
    J.P. Paraknowitsch, A. Thomas, M. Antonietti, A detailed view on the polycondensation of ionic liquid monomers towards nitrogen doped carbon materials. J. Mater. Chem. 20, 6746–6758 (2010)CrossRefGoogle Scholar
  50. 50.
    Q. Liu, Z. Pu, C. Tang, A.M. Asiri, A.H. Qusti, A.O. Al-Youbi, X. Sun, N-doped carbon nanotubes from functional tubular polypyrrole: a highly efficient electrocatalyst for oxygen reduction reaction. Electrochem. Commun. 36, 57–61 (2013)CrossRefGoogle Scholar
  51. 51.
    X. Sun, W. Si, X. Liu, J. Deng, L. Xi, L. Liu, C. Yan, O.G. Schmidt, Multifunctional Ni/NiO hybrid nanomembranes as anode materials for high-rate Li-ion batteries. Nano Energy 9, 168–175 (2014)CrossRefGoogle Scholar
  52. 52.
    L.-Z. Bai, D.-L. Zhao, T.-M. Zhang, W.-G. Xie, J.-M. Zhang, Z.-M. Shen, A comparative study of electrochemical performance of graphene sheets, expanded graphite and natural graphite as anode materials for lithium-ion batteries. Electrochim. Acta 107, 555–561 (2013)CrossRefGoogle Scholar
  53. 53.
    J. Li, X. Zhang, J. Guo, R. Peng, R. Xie, Y. Huang, Y. Qi, Facile surfactant- and template-free synthesis and electrochemical properties of SnO2/graphene composites. J. Alloys Compd. 674, 44–50 (2016)CrossRefGoogle Scholar
  54. 54.
    H. Qiao, K. Chen, L. Luo, Y. Fei, R. Cui, Q. Wei, Sonochemical synthesis and high lithium storage properties of Sn/CMK-3 nanocomposites. ACS Appl. Mater. Interfaces 165, 3704–3708 (2011)CrossRefGoogle Scholar
  55. 55.
    H. Sun, G. Xin, T. Hu, M. Yu, D. Shao, X. Sun, J. Lian, High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries. Nat. Commun. 5, 4526–4533 (2014)CrossRefGoogle Scholar
  56. 56.
    L. Su, Z. Zhou, P. Shen, Ni/C Hierarchical nanostructures with Ni nanoparticles highly dispersed in N-containing carbon nanosheets: origin of Li storage capacity. J. Phys. Chem. C 116, 23974–23980 (2015)CrossRefGoogle Scholar
  57. 57.
    G.-C. Li, W. Zhao, Zeolitic imidazolate frameworks derived Co nanoparticles anchored on graphene as superior anode material for lithium ion batteries. J. Alloys Compd. 716, 156–161 (2017)CrossRefGoogle Scholar
  58. 58.
    M.V. Reddy, T. Yu, C.H. Sow, Z.X. Shen, C.T. Lim, G.V. Subba Rao, B.V.R. Chowdari, α-Fe2O3 nanoflakes as an anode material for Li-ion batteries. Adv. Funct. Mater. 17, 2792–2799 (2007)CrossRefGoogle Scholar
  59. 59.
    J.C. Yue, X.Y. Zhao, D.G. Xia, Electrochemical lithium storage of C/Co composite as an anode material for lithium ion batteries. Electrochem. Commun. 18, 44–47 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringLanzhou University of TechnologyLanzhouChina
  2. 2.Department of Manufacturing EngineeringGeorgia Southern UniversityStatesboroUSA
  3. 3.State Key Laboratory of Advanced Processing and Recycling of Non-ferrous MetalsLanzhouChina

Personalised recommendations