Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 23, pp 19923–19931 | Cite as

Effect of doping Sr2+ on luminescence and abnormal thermal quenching behavior of silicate solid-solution green phosphor Ba9Lu2Si6O24:Eu2+

  • Chuang Wang
  • Jing Jiang
  • Ge Zhu
  • Shuangyu Xin
  • Xuejiao Wang
Article
  • 48 Downloads

Abstract

A novel Eu2+ ions doped silicate solid-solution green phosphors, (Ba1−ySry)9Lu2Si6O24:0.14Eu2+ (0 ≤ y ≤ 0.25), have been successfully prepared by conventional sintering method. The Rietveld refinement result was taken to determine the pure phase of (Ba1−ySry)9Lu2Si6O24:0.14Eu2+ (0 ≤ y ≤ 0.25). The characteristic optical properties, especially the thermal quenching properties were studied. The excitation spectra of (Ba1−ySry)9Lu2Si6O24:0.14Eu2+ span from 350 to 460 nm. When the Sr2+ contents increased, the dominate emission peak was found to red shift from 503 to 525 nm under n-UV excitation. The emission intensity of (Ba0.75Sr0.25)9Lu2Si6O24:0.14Eu2+ can reach 90% compared with the emission intensity of commercial phosphor LMS520B. Moreover, when the doping concentration of Sr2+ reaches 25%, the phosphor can obtain a smaller thermal quenching (TQ), which still kept 85% of the initial emission intensity when the temperature increased to 150 °C. The reason why the temperature stability increased along with the increasing Sr2+ ions was illustrated expressly through the schematic diagram and the activation energy calculated by Arrhenius equation. Moreover, the chromaticity index shifted from (0.2157, 0.4165) to (0.2812, 0.5744), and the color purity of (Ba1−ySry)9Lu2Si6O24:0.14Eu2+ increased from 32.36% to 56.82% with the concentration of Sr2+ changing from y = 0 to y = 0.25.

Notes

Acknowledgements

This work is supported by the Doctoral Research Fund of Liaoning Province (Nos. 201601351, 20170520277), the National Natural Science Foundation of China (No. 11704043) and the Special Foundation for theoretical physics Research Program of China (Nos. 11747113, 11747117).

References

  1. 1.
    E.F. Schubert, J.K. Kim, Science 308, 1274–1278 (2005)CrossRefGoogle Scholar
  2. 2.
    A.A. Setlur, W.J. Heward, M.E. Hannah, Chem. Mater. 20, 6277–6283 (2008)CrossRefGoogle Scholar
  3. 3.
    H.O. Ji, J.Y. Su, Y.R.H. Do, Light Sci. Appl. 141, e141 (2014)Google Scholar
  4. 4.
    A. Katelnikovas, T. Bareika, P. Vitta, H. Winkler, Opt. Mater. 32, 1261 (2010)CrossRefGoogle Scholar
  5. 5.
    G. Zhu, Z. Li, C. Wang, J. Mater. Sci. 29, 2216 (2018)Google Scholar
  6. 6.
    Z. Cheng, Y. Zhang, J. Yu, J. Mater. Sci. 29, 14495 (2018)Google Scholar
  7. 7.
    S. Xin, S. Yuan, C. Wang, J. Mater. Sci. 29, 4895–4899 (2018)Google Scholar
  8. 8.
    S. Park, S. Kang, J. Mater. Sci. 14, 223 (2003)Google Scholar
  9. 9.
    A.L. Diaz, D.A. Keszler, Chem. Mater. 9, 2071 (1997)CrossRefGoogle Scholar
  10. 10.
    C.C. Lin, Y.S. Tang, S.F. Hu, R.S. Liu, J. Lumin. 129, 1682–1684 (2009)CrossRefGoogle Scholar
  11. 11.
    S. Zhang, Y. Nakai, T. Tsuboi, Y. Huang, H.J. Seo, Inorg. Chem. 50, 2897–2900 (2011)CrossRefGoogle Scholar
  12. 12.
    D.Y. Wang, C.H. Huang, Y.C. Wu, T.M. Chen, J. Mater. Chem. 21, 10818–10822 (2011)CrossRefGoogle Scholar
  13. 13.
    J.Y. Han, W.B. Im, D. Kim, S.H. Cheong, G.Y. Lee, D.Y. Jeon, J. Mater. Chem. 22, 5374–5381 (2012)CrossRefGoogle Scholar
  14. 14.
    G.G. Li, D.L. Geng, M.M. Shang, C. Peng, Z.Y.J.J. Cheng, Mater. Chem. 21, 13334–13344 (2011)CrossRefGoogle Scholar
  15. 15.
    Y.F. Liu, X. Zhang, Z.D. Hao, X.J. Wang, J.H. Zhang, Chem. Commun. 47, 10677–10679 (2011)CrossRefGoogle Scholar
  16. 16.
    N. Hirosaki, R.J. Xie, Y. Yamamoto, T. Suehiro, M. Mitomo, Appl. Phys. Lett. 86, 211905–211905 (2005)CrossRefGoogle Scholar
  17. 17.
    R.J. Kimoto, Y. Xie, K. Matsui, N.H. Ishizuka, Appl. Phys. Lett. 94, 041908–041908 (2009)CrossRefGoogle Scholar
  18. 18.
    C. Zhang, Y. Liu, J. Zhang, Mater. Res. Bull. 80, 288–294 (2016)CrossRefGoogle Scholar
  19. 19.
    Y. Liu, C. Zhang, Z. Cheng, Inorg. Chem. 55, 8628–8635 (2016)CrossRefGoogle Scholar
  20. 20.
    Y. Liu, J. Zhang, C. Zhang, Adv. Opt. Mater. 3, 1096–1101 (2015)CrossRefGoogle Scholar
  21. 21.
    L. Wang, H. Guo, J. Zhejiang Norm Univ. (2015)Google Scholar
  22. 22.
    L.H. Wang, L.F. Schneemeyer, R.J. Cava, T. Siegrist, J. Solid State Chem. 113, 211 (1994)CrossRefGoogle Scholar
  23. 23.
    G. Ju, Y. Hu, L. Chen, X. Wang, J. Appl. Phys. 111, 113508 (2012)CrossRefGoogle Scholar
  24. 24.
    S. Schmiechen, H. Schneider, P. Wagatha, Chem. Mater. 26, 2712–2719 (2014)CrossRefGoogle Scholar
  25. 25.
    P. Pust, A.S. Wochnik, E. Baumann, Chem. Mater. 26, 3544–3549 (2014)CrossRefGoogle Scholar
  26. 26.
    G. Blasse, B.C. Grabmaier, Lumin. Mater (Springer, Berlin, 1994)CrossRefGoogle Scholar
  27. 27.
    V. Bachmann, O. Oeckler, W. Schnick, A. Meijerink, Cheminform. 21, 316–325 (2009)Google Scholar
  28. 28.
    R.D. Shannon, Crystal physics, diffraction, theoretical and general. Acta Crystallogr. 37, 636–641 (1981)CrossRefGoogle Scholar
  29. 29.
    M.Y. Peng, Z.W. Pei, G.Y. Hong, Q. Su, J. Mater. Chem. 13, 1202 (2003)CrossRefGoogle Scholar
  30. 30.
    J. Brgoch, C. Borg, K.A. Denault, Solid State Sci. 18, 149–154 (2013)CrossRefGoogle Scholar
  31. 31.
    F.S. Liu, Q.L. Liu, J.K. Liang, J. Lumin 111, 61–68 (2005)CrossRefGoogle Scholar
  32. 32.
    W.R. Liu, C.W. Yeh, C.H. Huang, C.C. Lin, Y.C. Chiu, Y.T. Yeh, R.S. Liu, J. Mater. Chem. 21, 3740 (2011)CrossRefGoogle Scholar
  33. 33.
    P. Dorenbos, J. Phys. 17, 8103 (2005)Google Scholar
  34. 34.
    B.H.G.G. Imbusch, Optical Spectroscopy of Inorganic Solids (Clarendon Press, Oxford, 1989)Google Scholar
  35. 35.
    S. Bhushan, M.V. Chukichev, J. Mater. Sci. 7, 319–321 (1988)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Chuang Wang
    • 1
  • Jing Jiang
    • 1
  • Ge Zhu
    • 1
  • Shuangyu Xin
    • 1
  • Xuejiao Wang
    • 1
  1. 1.College of New EnergyBohai UniversityJinzhouPeople’s Republic of China

Personalised recommendations