Advertisement

Effects of Co addition on shear strength and interfacial microstructure of Sn–Zn–(Co)/Ni joints

  • J. Y. Li
  • J. Peng
  • R. C. Wang
  • Y. Feng
  • C. Q. Peng
Article
  • 2 Downloads

Abstract

Sn–9Zn solder alloyed with cobalt (0, 0.5, 3 wt%) was bonded to Ni pad at 250 °C for various durations, and the effects of Co on the microstructure evolution and the shear behavior of the Sn–Zn/Ni joints were investigated by microstructural observations and shear tests. The results reveal that Co improves the shear strength and the interfacial microstructure of the Sn–9Zn/Ni joints significantly. Co is not only a diffusion barrier that impedes Zn from gathering at the interfaces to form Ni5Zn21, but it reacts with Zn in the composite solders with 3 wt% Co adding to the Sn–9Zn solder. When preferential Ni5Zn21 is transformed into Ni2Sn2Zn at the Sn–Zn–Co/Ni interfaces, ductile ruptures occur as Ni2Sn2Zn has similar elastic modulus and connects firmly with the solder. Accordingly, the strength of the Sn–Zn–Co/Ni joints reaches the highest. Moreover, the shear strength of the Sn–Zn–3Co/Ni joints maintains above 35 MPa after 90 min soldering, on account of the Ni2Sn2Zn remaining uniform ripples and fracture surfaces appearing with homogeneous Ni2Sn2Zn dimples. Whereas, at the Sn–Zn/Ni joints, the thick Ni5Zn21 layer and pores intensify the stress concentration and lead to a lower strength. In general, the addition of Co refines the interfacial microstructure that the Sn–Zn–Co/Ni joints are uniformly stressed and achieve desirable strength.

Notes

Acknowledgements

This work was financially supported by Ministry of Science and Technology of China (2017YFB0305700).

References

  1. 1.
    S. Liu, S.B. Xue, P. Xue, J. Mater. Sci. Mater. Electron. 26, 4389–4411 (2015)CrossRefGoogle Scholar
  2. 2.
    K. Suganuma, K.S. Kim, J. Mater. Sci. Mater. Electron. 18, 121–127 (2007)CrossRefGoogle Scholar
  3. 3.
    J.C. Liu, Z.H. Wang, J.Y. Xie et al., Corr. Sci. 112, 150–159 (2016)CrossRefGoogle Scholar
  4. 4.
    T. Gancarz, P. Bobrowski, S. Pawlak et al., J. Electron. Mater. 47, 50–60 (2018)CrossRefGoogle Scholar
  5. 5.
    T. Gancarz, P. Bobrowski, J. Pstrus et al., J. Alloys Compd. 679, 442–453 (2016)CrossRefGoogle Scholar
  6. 6.
    W.Q. Xing, X.Y. Yua, H. Lia et al., Mater. Sci. Eng. A 678, 252–259 (2016)CrossRefGoogle Scholar
  7. 7.
    G. Ren, I.J. Wilding, M.N. Collins, J. Alloys Compd. 665, 251–260 (2016)CrossRefGoogle Scholar
  8. 8.
    G. Liu, S. Ji, Mater. Charact. 137, 39–49 (2018)CrossRefGoogle Scholar
  9. 9.
    M.M. Billah, K.M. Shorowordi, A. Sharif, J. Alloys Compd. 58, 32–39 (2014)CrossRefGoogle Scholar
  10. 10.
    C.H. Wang, H.H. Chen, J. Electron. Mater. 39, 2375 (2010)CrossRefGoogle Scholar
  11. 11.
    L. Zhang, J.G. Han, C.W. He et al., IEEE Trans. Electron Devices 59(12), 3269–3272 (2012)CrossRefGoogle Scholar
  12. 12.
    L. Zhang, J.G. Han, C.W. He et al., Sci. Technol. Weld. Join 17(5), 424–428 (2012)CrossRefGoogle Scholar
  13. 13.
    L. Zhang, J. Cui, J. Han et al., J. Rare Earths 30(8), 790–793 (2012)CrossRefGoogle Scholar
  14. 14.
    Y. Hu, S. Xue, H. Wang et al., J. Mater. Sci. Mater. Electron. 22(5), 481–487 (2011)CrossRefGoogle Scholar
  15. 15.
    M.L. Huang, X.L. Hou, N. Kang et al., J. Mater. Sci. Mater. Electron. 25(5), 2311–2319 (2014)CrossRefGoogle Scholar
  16. 16.
    J.C. Liu, G. Zhang, J.S. Ma, J. Alloy. Compd. 644, 113–118 (2015)CrossRefGoogle Scholar
  17. 17.
    K.S. Lin, H.Y. Huang, C.P. Chou, J. Alloy. Compd. 471, 291–295 (2009)CrossRefGoogle Scholar
  18. 18.
    C.H. Wang, C.C. Wen, C.Y. Lin, J. Alloy. Compd. 662(25), 475–483 (2016)CrossRefGoogle Scholar
  19. 19.
    Y.T. Chen, Y.T. Chan, C.C. Chen, J. Alloy. Compd. 507, 419–424 (2010)CrossRefGoogle Scholar
  20. 20.
    J.X. Hu, F.C. Yin, M.X. Zhao et al., J. Alloy. Compd. 747, 815–825 (2018)CrossRefGoogle Scholar
  21. 21.
    P.C. Reynolds, M. Stojanovic, S.E. Latturner, J. Solid State Chem. 184, 1875–1881 (2011)CrossRefGoogle Scholar
  22. 22.
    C. Schmetterer, D. Rajamohan, H.S. Effenberger, H. Flandorfer, Acta Cryst. C 68(10), 65–67 (2012)CrossRefGoogle Scholar
  23. 23.
    J. Chang, S.K. Seo, H.M. Lee, J. Electron. Mater. 39, 2643–2652 (2010)CrossRefGoogle Scholar
  24. 24.
    C.H. Wang, H.H. Chen, W.H. Lai, J. Electron. Mater. 40, 2436 (2011)CrossRefGoogle Scholar
  25. 25.
    J.L. Liang, Y. Du, Y.Y. Tang et al., J. Electron. Mater. 40, 2290 (2011)CrossRefGoogle Scholar
  26. 26.
    C. Schmetterer, D. Rajamohan, H. Ipser et al., Intermatalics. 19, 1489–1501 (2011)CrossRefGoogle Scholar
  27. 27.
    V. Gandova, G.P. Vassilev, J. Alloy. Compd. 609, 1–6 (2014)CrossRefGoogle Scholar
  28. 28.
    N. Zhao, J.F. Deng, Y. Zhong et al., J. Electron. Mater. 46, 1931 (2017)CrossRefGoogle Scholar
  29. 29.
    K.S. Lin, H.Y. Huang, C.P. Chou, J. Alloy. Compd. 471(1–2), 291–295 (2009)CrossRefGoogle Scholar
  30. 30.
    A.S.M.A. Haseeb, T.S. Leng, Intermetallics. 19, 707–712 (2011)CrossRefGoogle Scholar
  31. 31.
    Y.C. Huang, S.W. Chen, J. Mater. Res. 25(12), 2430–2438 (2010)CrossRefGoogle Scholar
  32. 32.
    C.H. Wang, S.E. Huang, P.Y. Huang, J. Electron. Mater. 44(12), 4907–4919 (2015)CrossRefGoogle Scholar
  33. 33.
    H.F. Lin, Y.C. Chang, C.C. Chen, J. Electron. Mater. 43(9), 3333–3340 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • J. Y. Li
    • 1
  • J. Peng
    • 1
  • R. C. Wang
    • 1
  • Y. Feng
    • 1
  • C. Q. Peng
    • 1
  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaChina

Personalised recommendations