Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 23, pp 19791–19797 | Cite as

The optimization of microwave dielectric properties of the Li2ZnTi3O8 ceramic by the phase purity control

  • Bin TangEmail author
  • Moke Zhou
  • Yingxiang Li
  • Fei Wang
  • Shuren Zhang


In recent reports, the microwave dielectric properties of Li2ZnTi3O8 ceramic deviate largely from the optimal value. In this paper by the Rietveld refinement method, the co-existence of the secondary phases is confirmed which is due to the zinc volatilization. Thus, the excessive ZnO addition is introduced to obtain a high purity Li2ZnTi3O8 phase. Microwave dielectric properties are theoretically calculated to prove the above statement, based on the property indices of these phases. The calculated result is consistent to the measured data, with relative deviation around 5%. The optimized properties make the ceramic a promising ceramic candidate for the microwave applications.



This work is supported by the National Natural Science Foundation of China (Grant Nos. 51672038 and 51402039). We also thank Mr. Chao Wang for the XRD result Rietveld refinement.


  1. 1.
    M.T. Sebastian, Dielectric Materials for Wireless Communication (Elsevier Science Publishers, Oxford, 2008), pp. 1–2CrossRefGoogle Scholar
  2. 2.
    D.W. Wang, D. Zhou, Cold-sintered temperature stable Na0.5Bi0.5MoO4–Li2MoO4 microwave composite ceramics. ACS Sustain. Chem. Eng. 6, 2438–2444 (2018)CrossRefGoogle Scholar
  3. 3.
    S. George, M.T. Sebastian, Synthesis and microwave dielectric properties of novel temperature stable high Q, Li2ATi3O8 (A = Mg, Zn) ceramics. J. Am. Ceram. Soc. 93, 2164–2166 (2010)CrossRefGoogle Scholar
  4. 4.
    J. Zhang, R.Z. Zuo, Low-temperature fired thermal-stable Li2TiO3–NiO microwave dielectric ceramics. J. Mater. Sci. 27, 7962–7968 (2016)Google Scholar
  5. 5.
    C.J. Pei, X.S. Hu, G.G. Yao, H.Q. Yang, Reaction-sintering method for microwave dielectric Li2CoTi3O8 ceramic. Ferroelectrics 505, 4–9 (2016)CrossRefGoogle Scholar
  6. 6.
    X.P. Lu, Y. Zheng, Correlation of heating rates, crystal structures, and microwave dielectric properties of Li2ZnTi3O8 ceramics. J. Electron. Mater. 44, 4243–4249 (2015)CrossRefGoogle Scholar
  7. 7.
    P. Zhang, Y. Wang, J. Liu, Z.K. Song, Y.M. Han, L.X. Li, A high improved quality factor of Li2MgTi3O8 microwave dielectric ceramics system. Mater. Lett. 123, 195–197 (2014)CrossRefGoogle Scholar
  8. 8.
    Y. Bao, G.H. Chen, M.Z. Hou, Y. Yang, Z.P. Han, K.N. Deng, Microwave dielectric properties and compatibility with silver of low-fired Li2MgTi3O8 ceramics with Li2O–MgO–B2O3 frit. Trans. Nonferrous Met. Soc. China 23, 3318–3323 (2013)CrossRefGoogle Scholar
  9. 9.
    L. Fang, D.J. Chu, H.F. Zhou, X.L. Chen, H. Zhang, B.C. Chang, C.C. Li, Y.D. Qin, X. Huang, Microwave dielectric properties of temperature Li2ZnxCo1–xTi3O8 ceramics. J. Alloys Compd. 509, 8840–8844 (2011)CrossRefGoogle Scholar
  10. 10.
    Y.X. Li, H. Li, J.S. Li, B. Tang, S.R. Zhang, H.T. Chen, Y. Wei, Effect of TiO2 ratio on the phase and microwave dielectric properties of Li2ZnTi3+xO8+2x ceramics. J. Electron. Mater. 43, 1107–1111 (2014)CrossRefGoogle Scholar
  11. 11.
    X.P. Lu, Y. Zheng, B. Zhou, Z.W. Dong, P. Cheng, Microwave dielectric properties of Li2ZnTi3O8 ceramics doped with Bi2O3. Ceram. Int. 39, 9829–9833 (2013)CrossRefGoogle Scholar
  12. 12.
    G.H. Chen, M.Z. Hou, Y. Bao, C.L. Yuan, C.R. Zhou, H.R. Xu, Silver co-firable Li2ZnTi3O8 microwave dielectric ceramics with LZB glass additive and TiO2 dpant. Int. J. Appl. Ceram. Technol. 10, 492–501 (2013)CrossRefGoogle Scholar
  13. 13.
    X.B. Liu, H.F. Zhou, X.L. Chen, L. Fang, Phase structure and microwave dielectric properties of (1−x)Li2Zn3Ti4O12–xTiO2 ceramics. J. Alloys Compd. 515, 22–25 (2012)CrossRefGoogle Scholar
  14. 14.
    L.X. Pang, D. Zhou, Microwave dielectric properties of low-firing Li2MO3 (M = Ti, Zr, Sn) ceramics with B2O3–CuO addition. J. Am. Ceram. Soc. 93, 3614–3617 (2010)CrossRefGoogle Scholar
  15. 15.
    Y.D. Zhang, D. Zhou, Pseudo phase diagram and microwave dielectric properties of Li2O–MgO–TiO2 ternary system. J. Am. Ceram. Soc. 99, 3645–3650 (2016)CrossRefGoogle Scholar
  16. 16.
    S. Yu, B. Tang, S. Zhang, X. Zhang, Temperature stable high-Q microwave dielectric ceramics in (1−x)BaTi4O9–xBaZn2Ti4O11 system. Mater. Lett. 67, 293–295 (2012)CrossRefGoogle Scholar
  17. 17.
    S. Yoon, G. Choi, D. Kim, S. Cho, K. Hong, Mixture behavior and microwave dielectric properties of (1−x)CaWO4–xTiO2. J. Eur. Ceram. Soc. 27, 3087–3091 (2007)CrossRefGoogle Scholar
  18. 18.
    K. Surendran, P. Bijumon, P. Mohanan, M. Sebastian, (1−x)MgAl2O4−xTiO2 dielectrics for microwave and millimeter wave applications. Appl. Phys. A 81, 823–826 (2005)CrossRefGoogle Scholar
  19. 19.
    N. Ichinose, T. Shimada, Effect of grain size and secondary phase on microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 and Ba([Mg,Zn]1/3Ta2/3)O3 systems. J. Eur. Ceram. Soc. 26, 1755–1759 (2006)CrossRefGoogle Scholar
  20. 20.
    B. Fu, Y. Zhang, H. Yue, Microwave dielectric properties of (1−x)ZnTa2O6–xMgNb2O6 ceramics. Ceram. Int. 39, 3789–3793 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Bin Tang
    • 1
    Email author
  • Moke Zhou
    • 1
  • Yingxiang Li
    • 1
  • Fei Wang
    • 2
  • Shuren Zhang
    • 1
  1. 1.State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Chengdu B&M Science and Technology Co., Ltd.ChengduChina

Personalised recommendations