Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 23, pp 19775–19782 | Cite as

Light weight RGO/Fe3O4 nanocomposite for efficient electromagnetic absorption coating in X-band

  • F. Z. Mohammad
  • Ijaz Ahmad
  • J. J. Siddiqui
  • K. M. Ali
  • M. Mudsar
  • H. Arshad
Article
  • 67 Downloads

Abstract

Reduced graphene oxide (RGO)/magnetite (Fe3O4) nanocomposite has been synthesized by an in-situ facile hydrothermal method. The XRD pattern reveals the development of nanocomposite in which both phases are coexistent. Raman Spectroscopy shows the main characteristics peaks of D and G bands at 1349 cm−1 and 1595 cm−1 for graphitic structures. The intensity ratio (ID/IG) is also calculated, which indicate the degree of defects in the material. This ratio (ID/IG), increases from 0.84 for GO to 0.91 for RGO/Fe3O4 nanocomposite and promotes the defects which are beneficial for electromagnetic (EM) absorption. The SEM image depicts that, Fe3O4 spherical nanoparticles are dispersed over the surface of graphene sheets and provide a thermal conducting path for heat dissipation between different layers of graphene. The EM absorption properties have been analyzed at 2–18 GHz of RGO and RGO/Fe3O4. The addition of proper content of Fe3O4 magnetic nanoparticles in RGO sheets improved the Reflection Loss (RL) from − 13.5 dB to − 20 dB at a frequency of 9.5 GHz. Moreover, due to magnetic loss and interfacial polarization, the effective bandwidth increases from 2.5 GHz to 3.8 GHz at a coating thickness of 1.5 mm. Hence this light weight nanocomposite is an excellent material for strong EM absorption in X-band.

Notes

Acknowledgement

Financial support from the Center Of Excellence in Science and Applied Technologies is gratefully acknowledged for this Research and Development.

References

  1. 1.
    H.J. Wu, G.L. Wu, Y.Y. Ren, L. Yang. L.D. Wang, X.H. Li, Co2+/Co3+ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4-CoNiO2 hybrids. J. Mater. Chem. C 3, 7677–7690 (2015)CrossRefGoogle Scholar
  2. 2.
    D.P. Sun, Q. Zou, Y.P. Wang, Y.J. Wang, W. Jiang, F.S. Li, Controllable synthesis of porous Fe3O4 @ ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption. J. Nanoscale 6, 6557–6562 (2014)CrossRefGoogle Scholar
  3. 3.
    M. Cao, X. Wang, W. Cao, X. Fang, B. Wen, J. Yuan, Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small. (2018).  https://doi.org/10.1002/smll.201800987 CrossRefGoogle Scholar
  4. 4.
    A. Mallick, A.S. Mahapatra, A. Mitra, P.K. Chakrabarti, Soft magnetic property and enhanced microwave absorption of nanoparticles of Co0.5Zn0.5Fe2O4 incorporated in MWCNT. J. Magn. Magn. Mater. 416, 181–187 (2016)CrossRefGoogle Scholar
  5. 5.
    H. Wu, S. Qu, K. Lin, Y. Qing, L. Wang, Y.F.Q. Fu, F. Zhang, Enhanced low-frequency microwave absorbing property of SCFs@TiO2 composite. Powder Technol. (2018).  https://doi.org/10.1016/j.powtec.2018.04.015 CrossRefGoogle Scholar
  6. 6.
    X.J. Zhang, G.S. Wang, W.Q. Cao, Y.Z. Wei, J.F. Liang, L. Guo, M.S. Cao, Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. Appl Mater Interfaces 6, 7471–7478 (2014)CrossRefGoogle Scholar
  7. 7.
    G. Wu, Y. Cheng, Q. Xie, Z. Jia, F. Xiang, H. Wu, Facile synthesis of urchin-like ZnO hollow spheres with enhanced electromagnetic wave absorption properties. Mater. Lett. 144, 157–160 (2015).CrossRefGoogle Scholar
  8. 8.
    G. Wu, Y. Cheng, F. Xiang, Z. Jia, Q. Xie, H. Wu, H. Wu, Morphology-controlled synthesis, characterization and microwave absorption properties of nanostructured 3D CeO2. Mater. Sci. Semicond. Process. 41, 6–11 (2016)CrossRefGoogle Scholar
  9. 9.
    Y.J. Chen, G. Xiao, T.S. Wang, Q.Y. Ouyang, L.H. Qi, Y. Ma, P. Gao, C.L. Zhu, M.S. Cao, H.B. Jin, Porous Fe3O4/carbon core/shell nanorods: synthesis and electromagnetic properties. J. Phys. Chem. C 115, 13603–13608 (2011)CrossRefGoogle Scholar
  10. 10.
    N.L. Li, Y. Huang, F. Du, X.B. He, X. Lin, H.J. Gao, Y.F. Ma, F.F. Li, Y.S. Chen, P.C. Eklund, Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett. 6, 1141–1145 (2006)CrossRefGoogle Scholar
  11. 11.
    W.-Q. Cao, X.-X. Wang, J. Yuan, W.-Z. Wang, M.-S. Cao, Temperature dependent microwave absorption of ultrathin graphene composites, J. Mater. Chem. C 3(38), 10017–10022 (2015)CrossRefGoogle Scholar
  12. 12.
    M.-S. Cao, X.-X. Wang, W.-Q. Cao, J. Yuan, Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding. J. Mater. Chem. C 3, 6589–6599 (2015)CrossRefGoogle Scholar
  13. 13.
    G. Wu, H. Wu, L. Wang, Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: facile synthesis and electromagnetic properties. Powder Technol. 269, 443–451 (2015)CrossRefGoogle Scholar
  14. 14.
    X.-X. Wang, T. Ma, J.-C. Shu, M.-S. Cao, Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth. Chem. Eng. J. (2017).  https://doi.org/10.1016/j.cej.2017.09.101 CrossRefGoogle Scholar
  15. 15.
    J.J. Jennifer, A.F. David, B.S. Matthew, S. Peter, E.W. Mary, Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett. 4, 719–723 (2004)CrossRefGoogle Scholar
  16. 16.
    Y.J. Chen, F. Zhang, G.G. Zhao, X.Y. Fang, H.B. Jin, P. Gao, C.L. Zhu, M.S. Cao, G. Xiao, Synthesis, multi-nonlinear dielectric resonance, and excellent electromagnetic absorption characteristics of Fe3O4/ZnO core/shell nanorods J. Phys. Chem. C 114, 9239–9244 (2010)CrossRefGoogle Scholar
  17. 17.
    D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Spatially resolved Raman spectroscopy of single-and few-layer graphene. Nano Lett. 7, 238–242 (2007)CrossRefGoogle Scholar
  18. 18.
    B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, F. Wenzhong, W. Wang, J. Yuan, Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014)CrossRefGoogle Scholar
  19. 19.
    H.L. Guo, X.F. Wang, Q.Y. Qian, F.B. Wang, X.H. Xia, Electrochemical determination of nitrite using a reduced graphene oxide-multiwalled carbon nanotube-modified glassy carbon electrode. Anal. Lett. 49, 2917–2930 (2016)CrossRefGoogle Scholar
  20. 20.
    M. Zong, Y. Huang, N. Zhang, H. Wu, Influence of (RGO)/(ferrite) ratios and graphene reduction degree on microwave absorption properties of graphene composites. J. Alloy. Compd. 644, 491–501 (2015)CrossRefGoogle Scholar
  21. 21.
    J. Ma, X. Wang, W. Cao, C. Han, H. Yang, J. Yuan, M. Cao, A. Facile, Fabrication and highly tunable microwave absorption of 3D flowerlike Co3O4-rGO hybrid-architectures. Chem. Eng. J. 339, 487–498 (2018)CrossRefGoogle Scholar
  22. 22.
    Y. Ding, L. Zhang, Q. Liao, G. Zhang, S. Liu, Y. Zhang, Electromagnetic wave absorption in reduced graphene oxide functionalized with Fe3O4/Fe nanorings. Nano Res. (2016).  https://doi.org/10.1007/s12274-016-1092-z CrossRefGoogle Scholar
  23. 23.
    R.J. Tseng, C.O. Shedd, J.X. Huang, R.B. Kaner, J.Y. Ouyang, Y. Yang, Charge transfer effect in the polyaniline-gold nanoparticle memory system. Appl. Phys. Lett. 90, 053101 (2007)CrossRefGoogle Scholar
  24. 24.
    H. Yu, T. Wang, B. Wen, M. Lu, Z. Xu, C. Zhu, Y. Chen, X. Xue, C. Sun, M. Cao, Graphene/polyaniline nanorods arrays: synthesis and excellent electromagnetic absorption properties. Mater Chem. 22, 21679–2185 (2012)CrossRefGoogle Scholar
  25. 25.
    G. Wu, Y. Cheng, Y. Ren, Y. Wang, Z. Wang, H. Wu, Synthesis and characterization of γ-Fe2O3@C nanorod-carbon sphere composite and its application as microwave absorbing material. J. Alloy. Compd. (2015).  https://doi.org/10.1016/j.jallcom.2015.08.2 CrossRefGoogle Scholar
  26. 26.
    T. Wang, Z. Liu, M. Lu, B. Wen, Q. Ouyang, Y. Chen, C. Zhu, P. Gao, C. Li, M. Cao, L. Qi, Graphene-Fe3O4 nanohybrids: synthesis and excellent electromagnetic absorption properties. J Appl. Phys. 113, 024314 (2013)CrossRefGoogle Scholar
  27. 27.
    J. Zhao, J. Lin, J. Xiao, H. Fan, Synthesis and electromagnetic, microwave absorbing properties of polyaniline/graphene oxide/Fe3O4 nanocomposite. RSC Adv. 5, 19345–1952 (2015)CrossRefGoogle Scholar
  28. 28.
    T.T. Tung, J.F. Feller, T.Y. Kim, H. Kim, W.S. Yang, K.S. Suh, Electromagnetic properties of Fe3O4-functionalized graphene and its composites with a conducting polymer. J Polym. Sci. Part A 50, 927–935 (2012)CrossRefGoogle Scholar
  29. 29.
    R.C. Che, C.Y. Zhi, C.Y. Liang, X.G. Zhou, Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite. Appl. Phys. Lett. 88, 033105 (2006)CrossRefGoogle Scholar
  30. 30.
    X.X. Wang, J.-C. Shu, M.-S. Cao, Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth. Chem. Eng. J. 332, 321–330 (2018) 15 )CrossRefGoogle Scholar
  31. 31.
    M. Cao, C. Han, X. Wang, M. Zhang, Y. Zhang, J. Shu, H. Yang, X. Fang, J. Yuan, Graphene nanohybrids: excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves. J. Mater. Chem. C 6, 4586 (2018)CrossRefGoogle Scholar
  32. 32.
    M. Jia Liu, Q. Cao, H. Luo, W. Shi, Wang, J. Yuan, Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature. ACS Appl. Mater. Interfaces 34, 22615–22622 (2016)Google Scholar
  33. 33.
    M.-M. Lu, M.-S. Cao, Y.-H. Chen, W.-Q. Cao, J. Liu, H.-L. Shi, D.-Q. Zhang, Wenzhong Wang, and Jie Yuan, Multiscale assembly of grape-like ferroferric oxide and carbon-nanotubes: a smart absorber prototype varying temperature to tune intensities. ACS Appl. Mater. Interfaces 34, 19408–19415 (2015)CrossRefGoogle Scholar
  34. 34.
    Y.J. Chen, P. Gao, R.X. Wang, C.L. Zhu, L.J. Wang, M.S. Cao, H.B. Jin, Porous Fe3O4/SnO2 core/shell nanorods: synthesis and electromagnetic properties. J. Phys. Chem. C 113, 10061–10064 (2009)CrossRefGoogle Scholar
  35. 35.
    J. Zhao, J. Lin, J. Xiao, H. Fan, Synthesis and electromagnetic, microwave absorbing properties of polyaniline/graphene oxide/Fe3O4 nanocomposites. R. Soc. Chem. 5(25), 19345–19352 (2015)Google Scholar
  36. 36.
    Y.-L. Ren, H.-Y. Wu, M.-M. Lu, Y.-J. Chen, C.-L. Zhu, P.Gao,Mao-Sheng Cao, C.-Y. Li, Q.-Y. Ouyang, Quaternary nanocomposites consisting of graphene, Fe3O4@FeCore@Shell, and ZnO nanoparticles: synthesis and excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces 4, 6436–6442 (2012)CrossRefGoogle Scholar
  37. 37.
    B. Xiaojun Zeng, H. Yang, Yang, Lingyu Zhu, and Ronghai Yua, Solvothermal synthesis and good microwave absorbing properties for magnetic porous-Fe3O4/graphene Nanocomposites. AIP Adv. 7, 056605 (2017)CrossRefGoogle Scholar
  38. 38.
    Y. Yin, M. Zeng, J. Liu, W. Tang, H. Dong, R. Xia, R. Yu, Enhanced high-frequency absorption of anisotropic Fe3O4/graphene nanocomposites. Sci. Rep. (2016).  https://doi.org/10.1038/srep25075 CrossRefGoogle Scholar
  39. 39.
    L. Zhu, X. Zeng, X. Li, B. Yang, R. Yu, Hydrothermal synthesis of magnetic Fe3O4/graphene composites with good electromagnetic microwave absorbing performances. J. Magn. Magn. Mater. (2017).  https://doi.org/10.1016/j.jmmm.2016.11.063 CrossRefGoogle Scholar
  40. 40.
    Y. Ding, L. Zhang, Q. Liao, G. Zhang, S. Liu, Y. Zhang (2016) Electromagnetic wave absorption in reduced graphene oxide functionalized with Fe3O4/Fe nanorings. Nano Res. 9(7), 2018–2025.  https://doi.org/10.1007/s12274-016-1092-z CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • F. Z. Mohammad
    • 1
  • Ijaz Ahmad
    • 1
  • J. J. Siddiqui
    • 1
  • K. M. Ali
    • 1
  • M. Mudsar
    • 1
  • H. Arshad
    • 1
  1. 1.Center of Excellence in Science and Applied TechnologiesIslamabadPakistan

Personalised recommendations