Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19578–19587 | Cite as

Fabrication of highly electrically conductive Ti/Ag/Ti tri-layer and Ti–Ag alloy thin films on PET fabrics by multi-target magnetron sputtering

  • Chuanmei Liu
  • Jiangtao Xu
  • Zhengqin Liu
  • Xin Ning
  • Shouxiang Jiang
  • Dagang MiaoEmail author


In this study Ti/Ag/Ti tri-layer and Ti–Ag alloy films were deposited on the surfaces of polyethylene terephthalate (PET) fabrics by multi-target magnetron sputtering system to fabricate highly electro-conductive textiles. Before sputtering, the fabric was treated by polyacrylic acid ester (PA) to form a continuous surface on the surface of PET fabric by padding method. The as-fabricated fabrics were characterized by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectrometer. And the physical properties of the coated fabrics were evaluated by electrical conductivity, contact angle (CA), flexibility and adhesion. At last, a simple electric circuit was made with the as-treated fabric to evaluate the electrical property and explore its application further. The results of the study revealed that pretreatment with PA could form a continuous film on the surface of PET fabric. The PA-coated PET fabric with Ti/Ag/Ti fabric exhibited excellent electrical property whose electrical resistivity was only 5.1 × 10−7 Ω m, CA of 137°. The PA-coated PET fabric with Ti–Ag alloy film exhibited a rather lower electrical resistivity of 3.4 × 10−7 Ω m, CA of about 130°. Moreover, the samples retain ideal flexibility and adhesion. Therefore this study can broaden the application area of magnetron sputtering on discontinuous surface to fabricate electrical conductive fabric. And due to the excellent electro-conductivity, this kind of fabric will be a promising material for smart textiles.



We gratefully acknowledge the General Financial Grant (Grant No.: 2017M612207) from the China Postdoctoral Science Foundation.


  1. 1.
    X. Liu, H. Chang, Y. Li, W.T. Huck, Z. Zheng, ACS Appl. Mater. Interfaces 2, 529 (2010)CrossRefGoogle Scholar
  2. 2.
    L. Hu, M. Pasta, F.L. Mantia, L.F. Cui, S. Jeong, H.D. Deshazer, Nano Lett. 10, 708 (2010)CrossRefGoogle Scholar
  3. 3.
    S. Liu, M. Hu, J. Yang, J. Mater. Chem. 4, 1320 (2016)Google Scholar
  4. 4.
    J. Li, L. Yan, Y. Zhao, F. Zha, Q. Wang, Z. Lei, Phys. Chem. Chem. Phys. 17, 6451 (2015)CrossRefGoogle Scholar
  5. 5.
    T. Wang, G. Liu, J. Kong, Sci. Rep. 5, 18328 (2015)CrossRefGoogle Scholar
  6. 6.
    Y. Liu, J. Tang, R. Wang, H. Lu, L. Li, Y. Kong, J. Mater. Chem. 17, 1071 (2007)CrossRefGoogle Scholar
  7. 7.
    S. Nagappan, C.S. Ha, J. Mater. Chem. 3, 3224 (2015)CrossRefGoogle Scholar
  8. 8.
    S.X. Jiang, W.F. Qin, R.H. Guo, L. Zhang, Surf. Coat. Technol. 204, 3662 (2010)CrossRefGoogle Scholar
  9. 9.
    Q. Wei, Q. Li, D. Hou, Z. Yang, W. Gao, Surf. Coat. Technol. 201, 1821 (2006)CrossRefGoogle Scholar
  10. 10.
    S.X. Jiang, W.F. Qin, X.M. Tao, Z.M. Zhang, C.W.M. Yuen, J. Xiong, Fiber Polym. 12, 616 (2011)CrossRefGoogle Scholar
  11. 11.
    J. Yip, S. Jiang, C. Wong, Surf. Coat. Technol. 204, 380 (2009)CrossRefGoogle Scholar
  12. 12.
    N. Mengal, I.A. Sahito, A.A. Arbab, K.C. Sun, M.B. Qadir, A.A. Memon, Carbohydr. Polym. 152, 19 (2016)CrossRefGoogle Scholar
  13. 13.
    K. Sugawara, M. Kawamura, Y. Abe, K. Sasaki, Microelectron. Eng. 84, 2476 (2007)CrossRefGoogle Scholar
  14. 14.
    T.L. Alford, L. Chen, K.S. Gadre, Thin Solid Films 429, 248 (2003)CrossRefGoogle Scholar
  15. 15.
    H.C. Kim, N.D. Theodore, T.L. Alford, J. Appl. Phys. 95, 5180 (2004)CrossRefGoogle Scholar
  16. 16.
    D.R. Sahu, J.L. Huang, Thin Solid Films 515, 876 (2006)CrossRefGoogle Scholar
  17. 17.
    D. Lide, Handbook of Chemistry and Physics, 84th edn. (CRC, America, 2003), pp. 12–45Google Scholar
  18. 18.
    K. Sugawara, Y. Minamide, M. Kawamura, Y. Abe, K. Sasaki, Vacuum 83, 610 (2008)CrossRefGoogle Scholar
  19. 19.
    J.L. Murray, Bull. Alloy Ph. Diagr. 4, 81 (1983)CrossRefGoogle Scholar
  20. 20.
    S.W. Chen, C.H. Koo, Mater. Lett. 61, 4097 (2007)CrossRefGoogle Scholar
  21. 21.
    M. Kawamura, D. Fukuda, Y. Inami, Y. Abe, K. Sasaki, J. Vac. Sci. Technol. A 27, 975 (2009)CrossRefGoogle Scholar
  22. 22.
    M. Kawamura, Y. Inami, Y. Abe, K. Sasaki, Jpn. J. Appl. Phys. 47, 8917 (2008)CrossRefGoogle Scholar
  23. 23.
    W.C. Shih, K.S. Kao, D.L. Cheng, C.J. Chung, P.T. Hsieh, S.L. Ou, Surf. Coat. Technol. 219, 139 (2013)CrossRefGoogle Scholar
  24. 24.
    D. Miao, S. Jiang, S. Shang, Z. Chen, Vacuum 106, 1 (2014)CrossRefGoogle Scholar
  25. 25.
    S. Jiang, J. Xu, Z. Chen, R. Guo, D. Miao, L. Peng, J. Mater. Sci. Mater. Electron. 10, 1 (2018)Google Scholar
  26. 26.
    Y. Masuda, Handbook of Chemistry, 4th edn. (Akadémiai Kiadó, Tokyo, 1993), pp. 286–293Google Scholar
  27. 27.
    D. Miao, S. Jiang, H. Zhao, S. Shang, Z. Chen, J. Alloys Compd. 616, 26 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Chuanmei Liu
    • 1
  • Jiangtao Xu
    • 2
  • Zhengqin Liu
    • 1
  • Xin Ning
    • 1
  • Shouxiang Jiang
    • 2
  • Dagang Miao
    • 1
    Email author
  1. 1.Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and ClothingQingdao UniversityQingdaoChina
  2. 2.Institute of Textiles and ClothingThe Hong Kong Polytechnic UniversityHong KongChina

Personalised recommendations