Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19544–19553 | Cite as

Fabrication of novel Cu2O/Bi24O31Br10 composites and excellent photocatalytic performance

  • Zuming He
  • Bin Tang
  • Jiangbin Su
  • Yongmei XiaEmail author


This was the first report that novel Cu2O/Bi24O31Br10 heterostructure composites were synthesized by calcination-chemical reduction method. The as-prepared products were characterized by X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscope (FE-SEM), energy-disperse X-ray (EDS), photoluminescence (PL) spectroscopy, and ultraviolet–visible diffuse reflectance (UV–Vis DRS) spectroscopy. The photocatalytic activity of the samples was evaluated by the degradation of Methylene blue (MB) under visible light irradiation. The Cu2O/Bi24O31Br10 heterostructure composites show enhanced visible-light photocatalytic activity, which results from the efficient separation of photo-generated electron/hole pairs. The composites also exhibit good stability and recycling capacity in the photocatalytic process. Furthermore, radical scavenging experiments confirm that the reactive ·OH radicals play an important role in the photocatalytic reaction.



This work was supported by the Specialized Research Fund for the Doctoral Program of Jiangsu University of Technology (KYY17011) and the Jiangsu Province Key Laboratory of Materials Surface Science and Technology (KFBM 20170003) and the cooperation projects between universities and enterprises (KYH17020002).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.


  1. 1.
    Y.X. Yan, H. Yang, X.X. Zhao, R.S. Li, X.X. Wang, Enhanced photocatalytic activity of surface disorder-engineered CaTiO3. Mater. Res. Bull. 105, 286–290 (2018)CrossRefGoogle Scholar
  2. 2.
    H. Guo, C.G. Niu, X.J. Wen, L. Zhang, C. Liang, X.G. Zhang, D.L. Guan, N. Tang, G.M. Zeng, Construction of highly efficient and stable ternary AgBr/Ag/PbBiO2Br Z-scheme photocatalyst under visible light irradiation: performance and mechanism insight. J. Colloid Interface Sci. 513, 852–865 (2018)CrossRefGoogle Scholar
  3. 3.
    L.S. Zhong, C.H. Hu, J. Zhuang, Y. Zhong, D.H. Wang, H.Y. Zhou, AgBr/MgBi2O6 heterostructured composites with highly efficient visible-light-driven photocatalytic activity. J. Phys. Chem. Solids 117, 94–100 (2018)CrossRefGoogle Scholar
  4. 4.
    Z.M. He, Y.M. Xia, B. Tang, X.F. Jiang, J.B. Su, Fabrication and photocatalytic property of ZnO/Cu2O core-shell nanocomposites. Mater. Lett. 184, 148–151 (2016)CrossRefGoogle Scholar
  5. 5.
    N. Zhang, J. Gao, C.H. Huang a, W. Liu, P. Tong, L. Zhang, In situ hydrothermal growth of ZnO/g-C3N4 nanoflowers coated solid-phase microextraction fibers coupled with GC–MS for determination of pesticides residues. Anal. Chim. Acta 934, 122–131 (2016)CrossRefGoogle Scholar
  6. 6.
    H.L. Lv, G.B. Ji, Z.H. Yang, Y.S. Liu, X.M. Zhang, W. Liu, H.Q. Zhang, Enhancement photocatalytic activity of the graphite-like C3N4 coated hollow pencil-like ZnO. J. Colloid Interface Sci. 450, 381–387 (2015)CrossRefGoogle Scholar
  7. 7.
    D. Jiang, H. Yu, H.B. Yu, Modified g-C3N4/TiO2 nanosheets/ZnO ternary facet coupled heterojunction for photocatalytic degradation of p-toluenesulfonic acid (p-TSA) under visible light. Physica E 85, 1–6 (2017)CrossRefGoogle Scholar
  8. 8.
    M.O. Ansari, M.M. Khan, S.A. Ansari, K. Raju, J. Lee, M.H. Cho, Enhanced thermal stability under DC electrical conductivity retention and visible light activity of Ag/TiO2@Polyaniline nanocomposite film. ACS Appl. Mater. Interfaces 6, 8124–8133 (2014)CrossRefGoogle Scholar
  9. 9.
    J.G. Lv, J.H. Xu, M. Zhao, P.P. Yan, S.C. Mao, F.J. Shang, G. He, M. Zhang, Z.Q. Sun, Effect of seed layer on optical properties and visible photoresponse of ZnO/Cu2O compositethin films. Ceram. Int. 41, 13983–13987 (2015)CrossRefGoogle Scholar
  10. 10.
    L.J. Di, H. Yang, T. Xian, X.J. Chen, Enhanced photocatalytic activity of NaBH4 reduced BiFeO3 nanoparticles for rhodamine B decolorization. Materials 10, 1118 (2017)CrossRefGoogle Scholar
  11. 11.
    T. Takei, R. Haramoto, Q. Dong, N. Kumada, Y. Yonesaki, N. Kinomura, T. Mano, S. Nishimoto, Y. Kameshima, M. Miyake, Photocatalytic activities of various pentavalent bismuthates under visible light irradiation. J. Solid State Chem. 184, 2017–2022 (2011)CrossRefGoogle Scholar
  12. 12.
    W.T. Mao, K.Y. Bao, F.P. Cao, B.K. Chen, G.Y. Liu, W.B. Wang, B.B. Li, Synthesis of a CoTiO3/BiOBr heterojunction composite with enhanced photocatalytic performance. Ceram. Int. 43, 3363–3368 (2017)CrossRefGoogle Scholar
  13. 13.
    F. Wang, H. Yang, H.M. Zhang, J.L. Jiang, Growth process and enhanced photocatalytic performance of CuBi2O4 hierarchical microcuboids decorated with AuAg alloy nanoparticles. J. Mater. Sci.: Mater. Electron. 29, 1304–1316 (2018)Google Scholar
  14. 14.
    Q.F. Han, K.K. Zhang, J. Zhang, S. Gong, X. Wang, J.W. Zhu, Effect of the counter ions on composition and morphology of bismuth oxyhalides and their photocatalytic performance. Chem. Eng. J. 299, 217–226 (2016)CrossRefGoogle Scholar
  15. 15.
    W.D. Zhang, X.L. Liu, X.A. Dong, F. Dong, Y.X. Zhang, Facile synthesis of Bi12O17Br2 and Bi4O5Br2 nanosheets: in situ DRIFTS investigation of photocatalytic NO oxidation conversion pathway. Chin. J. Catal. 38, 2030–2038 (2017)CrossRefGoogle Scholar
  16. 16.
    J. Song, L. Zhang, J. Yang, X.H. Huang, J.S. Hu, Hierarchical porous Bi24O31Br10 microarchitectures assembled by ultrathin nanosheets with strong adsorption and excellent photocatalytic performances. Mater. Des. 123, 128–136 (2017)CrossRefGoogle Scholar
  17. 17.
    Z.S. Liu, Z.L. Liu, J.L. Liu, J.W. Zhang, T.F. Zhou, X. Ji, Enhanced photocatalytic performance of Er-doped Bi24O31Br10: facile synthesis and photocatalytic mechanism. Mater. Res. Bull. 76, 256–263 (2016)CrossRefGoogle Scholar
  18. 18.
    F.T. Li, Q. Wang, J. Ran, Y.J. Hao, X.J. Wang, D. Zhao, S.Z. Qiao, Ionic Liquid self-combustion synthesis of BiOBr/Bi24O31Br10 heterojuctions with exceptional visible-light photocatalytic performances. Nanoscale 7, 1116–1126 (2015)CrossRefGoogle Scholar
  19. 19.
    X. Lou, J. Shang, L. Wang, H.F. Feng, W.C. Hao, T.M. Wang, Y. Du, Enhanced photocatalytic activity of Bi24O31Br10: constructing heterojunction with BiOI. J. Mater. Sci. Technol. 33, 281–284 (2017)CrossRefGoogle Scholar
  20. 20.
    Y. Peng, P.P. Yu, Q.G. Chen, H.Y. Zhou, A.W. Xu, Facile fabrication of Bi12O17Br2/Bi24O31Br10 type II heterostructures with high visible photocatalytic activity. J. Phys. Chem. C 119, 13032–13040 (2015)CrossRefGoogle Scholar
  21. 21.
    Y.M. Xia, Z.M. He, W. Yang, B. Tang, Y.L. Lu, K.J. Hu, J.B. Su, X.P. Li, Effective charge separation in BiOI/Cu2O composites with enhanced photocatalytic activity. Mater. Res. Express 5, 025504 (2018)CrossRefGoogle Scholar
  22. 22.
    Z.M. He, Y.M. Xia, B. Tang, J.B. Su, Fabrication and photocatalytic property of magnetic NiFe2O4/Cu2O composites. Mater. Res. Express 4, 095501 (2017)CrossRefGoogle Scholar
  23. 23.
    Z.L. Liu, J.L. Liu, Z.S. Liu, J.A. Niu, P.Z. Feng, Soluble starch-modulated solvothermal synthesis of grain-like Bi24O31Br10 hierarchical architectures with enhanced photocatalytic activity. Mater. Res. Bull. 81, 119–126 (2016)CrossRefGoogle Scholar
  24. 24.
    Y.C. Ye, H. Yang, X.X. Wang, W.J. Feng, Photocatalytic, Fenton and photo-Fenton degradation of RhB over Z-scheme g-C3N4/LaFeO3 heterojunction photocatalysts. Mater. Sci. Semicond. Proc. 82, 14–24 (2018)CrossRefGoogle Scholar
  25. 25.
    C.X. Zheng, H. Yang, Z.M. Cui, H.M. Zhang, X.X. Wang, A novel Bi4Ti3O12/Ag3PO4 heterojunction photocatalyst with enhanced photocatalytic performance. Nanoscale Res. Lett. 12, 608 (2017)CrossRefGoogle Scholar
  26. 26.
    S.J. Zhang, J.F. Yang, Microwave-assisted synthesis of BiOCl/BiOBr composites with improved visible-light photocatalytic activity. Ind. Eng. Chem. Res. 54, 9913–9999 (2015)CrossRefGoogle Scholar
  27. 27.
    H.B. Yin, X.F. Chen, R.J. Hou, H.J. Zhu, S.Q. Li, Y.N. Huo, H.X. Li, Ag/BiOBr film in a rotating-disk reactor containing long-afterglow phosphor for round-the-clock photocatalysis. ACS Appl. Mater. Interfaces 7, 20076–20082 (2015)CrossRefGoogle Scholar
  28. 28.
    W.Q. Cui, W.J. An, L. Liu, J.H. Hu, Y.H. Liang, Novel Cu2O quantum dots coupled flower-like BiOBr for enhancedphotocatalytic degradation of organic contaminant. J. Hazard. Mater. 280, 417–427 (2014)CrossRefGoogle Scholar
  29. 29.
    C.H. Cao, L. Xiao, C.H. Chen, Q.H. Cao, Synthesis of novel Cu2O/BiOCl heterojunction nanocomposites and their enhanced photocatalytic activity under visible light. Appl. Surf. Sci. 357, 1171–1179 (2015)CrossRefGoogle Scholar
  30. 30.
    X. Zhao, H. Yang, Z. Cui, R. Li, W. Feng, Enhanced photocatalytic performance of Ag-Bi4Ti3O12 nanocomposites prepared by a photocatalytic reduction method. Mater. Technol. 32, 870–880 (2017)CrossRefGoogle Scholar
  31. 31.
    Y.C. Ye, H. Yang, R.S. Li, X.X. Wang, Enhanced photocatalytic performance and mechanism of Ag-decorated LaFeO3 nanoparticles. J. Sol-Gel. Sci. Technol. 82, 509–518 (2017)CrossRefGoogle Scholar
  32. 32.
    X. Zhang, F. Jia, L. Zhang, Generalized one-Pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres. J. Phys. Chem. C 112, 747–753 (2008)CrossRefGoogle Scholar
  33. 33.
    Y.M. Xia, Z.M. He, Y.L. Lu, B. Tang, S.P. Sun, J.B. Su, X.P. Li, Fabrication and photocatalytic property of magnetic SrTiO3/NiFe2O4 heterojunction nanocomposites. RSC Adv. 8, 5441–5450 (2018)CrossRefGoogle Scholar
  34. 34.
    Y.M. Xia, Z.M. He, K.J. Hu, B. Tang, J.B. Su, Y. Liu, X.P. Li, Fabrication of n-SrTiO3/p-Cu2O heterojunction composites with enhanced photocatalytic performance. J. Alloys Compd. 753, 356–363 (2018)CrossRefGoogle Scholar
  35. 35.
    C.X. Zheng, H. Yang, Assembly of Ag3PO4 nanoparticles on rose flower-like Bi2WO6 hierarchical architectures for achieving high photocatalytic performance. J. Mater. Sci.:Mater. Electron. 29, 9291–9300 (2018)Google Scholar
  36. 36.
    R. Li, F.X. Xie, J.X. Liu, Y.W. Wang, Y.F. Wang, X.C. Zhang, C.M. Fan, Synthesis of Bi4O5Br2 from reorganization of BiOBr and its excellent visible light photocatalytic activity. Dalton Trans. 45, 9182–9186 (2016)CrossRefGoogle Scholar
  37. 37.
    I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B 49, 1–14 (2004)CrossRefGoogle Scholar
  38. 38.
    P.E. de Jongh, D. Vanmaekelbergh, J.J. Kelly, Cu2O: a catalyst for the photochemical decomposition of water? Chem. Commun. 12, 1069–1070 (1999)CrossRefGoogle Scholar
  39. 39.
    Y.X. Yan, H. Yang, X.X. Zhao, H.M. Zhang, J.L. Jiang, A hydrothermal route to the synthesis of CaTiO3 nanocuboids using P25 as the titanium source. J. Electron. Mater. 47, 3045–3050 (2018)Google Scholar
  40. 40.
    Y.M. Xia, Z.M. He, J.B. Su, B. Tang, K.J. Hu, Y.L. Lu, S.P. Sun, X.P. Li, Fabrication of magnetically separable NiFe2O4/BiOI nanocomposites with enhanced photocatalytic performance under visible-light irradiation. RSC Adv. 8, 4284–4294 (2018)CrossRefGoogle Scholar
  41. 41.
    T.Y. Peng, K. Li, P. Zeng, Q.G. Zhang, X.G. Zhang, Enhanced photocatalytic hydrogen production over Graphene Oxide-Cadmium sulfide nanocomposite under visible light irradiation. J. Phys. Chem. C. 116, 22720–22726 (2012)CrossRefGoogle Scholar
  42. 42.
    A.M. Huerta-Flores, J.C. Chen, L.M. Torres-Martínez, A. Ito, E. Moctezuma, T. Goto, Laser assisted chemical vapor deposition of nanostructured NaTaO3 and SrTiO3 thin films for efficient photocatalytic hydrogen evolution. Fuel 197, 174–185 (2017)CrossRefGoogle Scholar
  43. 43.
    E. Grabowska, M. Marchelek, T. Klimczuk, W. Lisowski, TiO2/SrTiO3 and SrTiO3 microspheres decorated with Rh, Ru or Pt nanoparticles: highly UV-vis responsible photoactivity and mechanism. J. Catal. 350, 159–173 (2017)CrossRefGoogle Scholar
  44. 44.
    Z.M. Cui, H. Yang, X.X. Zhao, Enhanced photocatalytic performance of g-C3N4/Bi4Ti3O12 heterojunction. Mater. Sci. Eng. B 229, 160–172 (2018)CrossRefGoogle Scholar
  45. 45.
    T. Arai, M. Yanagida, Y. Konishi, Y. Iwasaki, H. Sugihara, K. Sayama, Efficient complete oxidation of acetaldehyde into CO2 over composite photocatalyst under visible and UV light irradiation. J. Phys. Chem. C 111, 7574–7577 (2007)CrossRefGoogle Scholar
  46. 46.
    C. Xu, L. Cao, G. Su, W. Liu, H. Liu, Y. Yu, X. Qu, Preparation of ZnO/Cu2O compound photocatalyst and application in treating organic dyes. J. Hazard. Mater. 176, 807–813 (2010)CrossRefGoogle Scholar
  47. 47.
    T. Tachikawa, M. Fujitsuka, T. Majima, Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts. J. Phys. Chem. C 111, 5259–5275 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Huaide CollegeChangzhou UniversityJingjiangChina
  2. 2.School of Materials and EngineeringJiangsu University of TechnologyChangzhouChina
  3. 3.Jiangsu Key Laboratory of Materials Surface Science and TechnologyChangzhou UniversityChangzhouChina
  4. 4.School of Mathematics and PhysicsChangzhou UniversityChangzhouChina

Personalised recommendations