Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19524–19531 | Cite as

Impact of multiple phases on ferroelectric and piezoelectric performances of BNKT–BZT ceramic

  • S. K. Rout
  • V. Chauhan
  • D. K. Kushvaha
  • E. Sinha
  • A. Hussain
  • B. Tiwari
Article
  • 85 Downloads

Abstract

Lead-free (1−x)Bi0.5(Na0.8K0.2)0.5TiO3–xBaZr0.1Ti0.9O3 (with x = 0.0, 0.02, 0.025, 0.030, 0.035, 0.040) were prepared by conventional solid state reaction method. The effect of different amount of barium zirconate titanate (BZT) on structural, microstructural, ferroelectric and piezoelectric properties was examined experimentally through X-ray diffraction, scanning electron microscope and field-induced polarization and strain measurement. The coexistence of rhombohedral/tetragonal phase has been observed in pure BNKT. Now, with the addition of BZT contents in pure BNKT, the tetragonal phase has been observed to be dominant over rhombohedral, but still, mixed phase coexists in entire composition range. The temperature dependent dielectric constant and room temperature ferroelectric hysteresis show a strong dependence on their crystallographic phases. Piezoelectric properties reveal that the BNKT–0.025BZT ceramic has a large unipolar strain of 0.21% (Smax/Emax = 430 pm/V) at room temperature under an external field of 5 kV/mm. Addition of BZT reduces the remnant polarization and hysteresis loss, suggesting ferroelectric ceramics for future energy storage applications.

Notes

Acknowledgements

All authors gratefully acknowledge the financial support from BRNS, Government of India, through Project File No. 34/14/11/2016-BRNS/34037.

References

  1. 1.
    M. Ahart, M. Somayazulu, R.E. Cohen, P. Ganesh, P. Dera, H. Mao, R.J. Hemley, Y. Ren, P. Liermann, Z. Wu, Origin of morphotropic phase boundaries in ferroelectrics. Nat. Lett. 451, 1–5 (2008)CrossRefGoogle Scholar
  2. 2.
    W.C. Lee, Y.F. Lee, M.H. Tseng, C.Y. Huang, Y.C. Wu, Crystal structure and ferroelectric properties of (Bi0.5Na0.5)TiO3–Ba(Zr0.05Ti0.95)O3 piezoelectric ceramics. J. Am. Ceram. Soc. 1, 1–5 (2009)Google Scholar
  3. 3.
    B. Parija, T. Badapanda, S.K. Rout, L.S. Cavalcante, S. Panigrahi, E. Longo, Morphotropic phase boundary and electrical properties of 1−x[Bi0.5Na0.5]TiO3–xBa[Zr0.25Ti0.75]O3 lead-free piezoelectric ceramics. Ceram. Int. 39, 4877–4886 (2013)CrossRefGoogle Scholar
  4. 4.
    V. Pal, O.P. Thakur, R.K. Dwivedi, J. Phys. D 055301, 55301 (2009)Google Scholar
  5. 5.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nat. Lett. 432, 84–87 (2004)CrossRefGoogle Scholar
  6. 6.
    R. Garg, B.N. Rao, A. Senyshyn, P.S.R. Krishna, R. Ranjan, Lead-free piezoelectric system (Na0.5Bi0.5)TiO3-BaTiO3: equilibrium structures and irreversible structural transformations driven by electric field and mechanical impact. Phys. Rev. B 88, 014103 (2013)CrossRefGoogle Scholar
  7. 7.
    B.N. Rao, R. Ranjan, Electric-field-driven monoclinic-to-rhombohedral transformation in Na1/2Bi1/2TiO3. Phys. Rev. B 134103, 3–6 (2012)Google Scholar
  8. 8.
    H. Lidjici, B. Lagoun, M. Berrahal, M. Rguitti, M.A. Hentatti, H. Khemakhem, XRD, Raman and electrical studies on the (1−x)(Na0.5Bi0.5)TiO3–xBaTiO3 lead free ceramics. J. Adv. Dielectr. 618, 643–648 (2015)Google Scholar
  9. 9.
    I. Coondoo, N. Panwar, A. Kholkin, Lead-free piezoelectrics: current status and perspectives. J. Adv. Dielectr. 3, 1–22 (2013)CrossRefGoogle Scholar
  10. 10.
    J. Suchanicz, J. Kusz, H. Bo, H. Duda, J.P. Mercurio, K. Konieczny, Structural and dielectric properties of (Na0.5Bi0.5)0.70Ba0.30TiO3 ceramics. J. Eur. Ceram. Soc. 23, 1559–1564 (2003)CrossRefGoogle Scholar
  11. 11.
    E.M. Anton, W. Jo, J. Trodahl, D. Damjanovic, J. Rodel, Effect of K0.5Na0.5NbO3 on properties at and off the morphotropic phase boundary in Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 ceramics. Jpn. J. Appl. Phys. 50, 055802–055810 (2011)CrossRefGoogle Scholar
  12. 12.
    H. Nagata, T. Takenaka, (Bi1/2Na1/2)TiO3-based non-lead piezoclectric ceramics. J. Korean Phys. Soc. 32, 1298–1300 (1998)Google Scholar
  13. 13.
    T. Takenaka, H. Nagata, Y. Hiruma, Phase transition temperatures and piezoelectric properties of (Bi1/2Na1/2)TiO3- and (Bi1/2K1/2)TiO3-based Bismuth perovskite lead-free ferroelectric ceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 1595–1612 (2009)CrossRefGoogle Scholar
  14. 14.
    W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602 (2009)CrossRefGoogle Scholar
  15. 15.
    D. Lin, K.W. Kwok, K.H. Lam, H.L.W. Chan, Structrual and electrical properties of K0.5Na0.5NbO3-LiSbO3 lead-free piezoelectric ceramics. J. Appl. Phys. 102, 074111 (2007)CrossRefGoogle Scholar
  16. 16.
    A. Ullah, C.W. Ahn, A. Hussain, S.Y. Lee, I.W. Kim, Phase transition, electrical properties, and temperature-insensitive large strain in BiAlO3-modified Bi0.5(Na0.75K0.25)0.5TiO3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 94, 3915–3921 (2011)CrossRefGoogle Scholar
  17. 17.
    A. Hussain, C.W. Ahn, J.S. Lee, A. Ullah, I.W. Kim, Large electric-field-induced strain in Zr-modified lead-free. Sens. Actuators A 158, 84–89 (2010)CrossRefGoogle Scholar
  18. 18.
    K.N. Pham, A. Hussain, C.W. Ahn, I.W. Kim, S.J. Jeong, J.S. Lee, Giant strain in Nb-doped Bi0.5(Na0.82K0.18)0.5TiO3 lead-free electromechanical ceramics. Mater. Lett. 64, 2219–2222 (2010)CrossRefGoogle Scholar
  19. 19.
    H.S. Han, C.W. Ahn, I.W. Won, A. Hussain, J.S. Lee, Destabilization of ferroelectric order in bismuth perovskite ceramics by A-site vacancies. Mater. Lett. 70, 98–100 (2012)CrossRefGoogle Scholar
  20. 20.
    A. Ullah, C.W. Ahn, A. Hussain, S.Y. Lee, J.S. Kim, I.W. Kim, Effect of potassium concentration on the structure and electrical properties of lead-free Bi0.5 (Na,K)0.5 TiO3–BiAlO3 piezoelectric ceramics. J. Alloys Compd. 509, 3148–3154 (2011)CrossRefGoogle Scholar
  21. 21.
    V.Q. Nguyen, H.S. Han, K.J. Kim, D.D. Dang, K.K. Ahn, J.S. Lee, Strain enhancement in Bi1/2(Na0.82K0.18)1/2TiO3 lead-free electromechanical ceramics by co-doping with Li and Ta. J. Alloys Compd. 511, 237–241 (2012)CrossRefGoogle Scholar
  22. 22.
    Y. Saito, H. Takao, High performance lead-free piezoelectric ceramics in the (K,Na) NbO3-LiTaO3 solid solution system. Ferroelectrics 338, 37–41 (2006)CrossRefGoogle Scholar
  23. 23.
    X. Yi, H. Chen, W. Cao, M. Zhao, D. Yang, G. Ma, C. Yang, J. Han, Flux growth and characterization of lead-free piezoelectric single crystal Bi0.5(Na(1–x)Kx)0.5TiO3. J. Cryst. Growth 281, 364–369 (2005)CrossRefGoogle Scholar
  24. 24.
    N.D. Quan, L.H. Bac, D.V. Thiet, V.N. Hung, D.D. Dung, Current development in lead-free Bi0.5(Na,K)0.5TiO3-based piezoelectric materials. Adv. Mater. Sci. Eng. 13, 1–14 (2014)CrossRefGoogle Scholar
  25. 25.
    A.K. Kalyani, K. Brajesh, A. Senyshyn, R. Ranjan, Orthorhombic-tetragonal phase coexistence and enhanced piezo-response at room temperature in Zr, Sn, and Hf modified BaTiO3. J. Appl. Phys. Lett. 104, 252906 (2014)CrossRefGoogle Scholar
  26. 26.
    A.K. Kalyani, R. Ranjan, Anomalous piezoelectric response due to stabilization of two ferroelectric phases in Zr-modified BaTiO3. J. Phys.: Condens. Matter. 25, 362203–362205 (2013)Google Scholar
  27. 27.
    K. Brajesh, A.K. Kalyani, R. Ranjan, Ferroelectric instabilities and enhanced piezoelectric response in Ce modified BaTiO3 lead-free ceramics. Appl. Phys. Lett. 106, 012907 (2015)CrossRefGoogle Scholar
  28. 28.
    Y. Xu, Perovskite-type ferroelectrics: part I, in Ferroelectric Materials and Their Applications (Elsevier, Amsterdam, 1991), pp. 101–162CrossRefGoogle Scholar
  29. 29.
    K.M. Rabe, C.H. Ahn, J.M. Triscone, in Physics of Ferroelectrics: A Modern Perspective. vol. 105, ed. by CE Ascheron (Springer, Heidelberg, 2007)Google Scholar
  30. 30.
    R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348 (1993)CrossRefGoogle Scholar
  31. 31.
    W. Bai, L. Li, W. Li, B. Shen, J. Zhai, H. Chen, Phase diagrams and electromechanical strains in lead-free BNT-based ternary perovskite compounds. J. Am. Ceram. Soc. 97, 3510–3518 (2014)CrossRefGoogle Scholar
  32. 32.
    W.C. Lee, C.Y. Huang, L.K. Tsao, Y.C. Wu, Chemical composition and tolerance factor at the morphotropic phase boundary in (Bi0.5 Na0.5) TiO3-based piezoelectric ceramics. J. Eur. Ceram. Soc. 29, 1443–1448 (2009)CrossRefGoogle Scholar
  33. 33.
    S.K. Ghosh, V. Chauhan, A. Hussain, S.K. Rout, Phase transition and energy storage properties of BaTiO3-modified Bi0.5(Na0.8K0.2)0.5TiO3 ceramics. Ferroelectrics 517, 97–103 (2017)CrossRefGoogle Scholar
  34. 34.
    Y. Negishi, T. Kimura, Problems in the preparation of textured lead-free piezoelectric ceramics by reactive- and hetero-templated grain growth methods. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 978, 1–4 (2012)Google Scholar
  35. 35.
    T. Kimura, Y. Yuan, F. Sakurai, Mechanisms of texture development in lead-free piezoelectric ceramics with perovskite structure made by the templated grain growth process. Materials 3, 4965–4978 (2010)CrossRefGoogle Scholar
  36. 36.
    V. Chauhan, S.K. Ghosh, A. Hussain, S.K. Rout, In fluence of niobium substitution on structural and opto-electrical properties of BNKT piezoelectric ceramics. J. Alloys Compd. 674, 413–424 (2016)CrossRefGoogle Scholar
  37. 37.
    X.P. Jiang, L.Z. Li, M. Zeng, H.L.W. Chan, Dielectric properties of Mn-doped (Na0.8K0.2)0.5Bi0.5TiO3 ceramics. Mater. Lett. 60, 1786–1790 (2006)CrossRefGoogle Scholar
  38. 38.
    J. Camargo, L. Ramajol, F. Rubio-Marcos, M. Castro, Ferroelectric properties of Bi0.5(Na0.8K0.2)0.5TiO3 ceramics. Adv. Mater. Res. 975, 3–8 (2014)CrossRefGoogle Scholar
  39. 39.
    P. Jaita, A. Watcharapasorn, N. Kumar, S. Jiansirisomboon, D.P. Cann, Lead-free (Ba0.70Sr0.30)TiO3-modified Bi0.5(Na0.80K0.20)0.5TiO3 ceramics with large electric field–induced strains. J. Am. Ceram. Soc. 99, 1615–1624 (2016)CrossRefGoogle Scholar
  40. 40.
    T.M. Correia, M. Mcmillen, M.K. Rokosz, P.M. Weaver, J.M. Gregg, G. Viola, M.G. Cain, A lead-free and high-energy density ceramic for energy storage applications. J. Am. Ceram. Soc. 2702, 2699–2702 (2013)CrossRefGoogle Scholar
  41. 41.
    S.K. Ghosh, S. Saha, T.P. Sinha, S.K. Rout, Large electrostrictive effect in (Ba1–xGd2x/3)Zr0.3Ti0.7O3 relaxor towards moderate field actuator and energy storage applications. J. Appl. Phys. 120, 204101 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. K. Rout
    • 1
  • V. Chauhan
    • 1
  • D. K. Kushvaha
    • 1
  • E. Sinha
    • 1
  • A. Hussain
    • 2
  • B. Tiwari
    • 3
  1. 1.Department of PhysicsBirla Institute of Technology, MesraRanchiIndia
  2. 2.Department of Materials Science and EngineeringInstitute of Space TechnologyIslamabadPakistan
  3. 3.Technical Physics DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations