Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19491–19498 | Cite as

Effect of strong static magnetic field on the microstructure and transformation temperature of Co–Ni–Al ferromagnetic shape memory alloy

  • Fan Bu
  • Xiangyi Xue
  • Jun WangEmail author
  • Hongchao Kou
  • Chao Li
  • Pingxiang Zhang
  • Eric Beaugnon
  • Jinshan Li


The effect of strong static magnetic field (SSMF) on the microstructure and phase transformation temperature of Co38Ni33Al29 ferromagnetic shape memory alloy during heat treatment has been studied. Results indicate that the microstructure and phase transformation temperature are significantly affected by the external SSMF. With the increasing magnetic field intensity, the volume fraction of γ phase decreased from 13.2 to 5.1%, the morphologies of γ phase evolved from rods to discrete stripes, and a clear alignment of γ phase was observed. In addition, the transformation temperatures are also elevated as the magnetic field intensity increases. The martensitic transformation temperature (MS) and the Curie point (TC) rose by 13 K and 10 K respectively when 4 T SSMF was applied. Moreover, the coercivity (HC) dramatically reduced to 11.7 Oe at 4 T magnetic field. Magnetic domains formed in β phase and they became ordered with the enhancing intensities of magnetic field.



Authors acknowledge the financial support from the Natural Science Foundation of China (No. 51690163) and the Program of Introducing Talents of Discipline to Universities (No. B08040).


  1. 1.
    N.B. Morgan, Medical shape memory alloy applications-the market and its products. Mater. Sci. Eng. A 378(1), 16–23 (2004)CrossRefGoogle Scholar
  2. 2.
    G. Vitel, M.G. Suru, A.L. Paraschiv et al., Structural effects of training cycles in shape memory actuators for temperature control. Mater. Manuf. Processes 28(1), 79–84 (2012)CrossRefGoogle Scholar
  3. 3.
    J.M. Jani, M. Leary, A. Subic et al., A review of shape memory alloy research, applications and opportunities. Mater. Des. 56(4), 1078–1113 (2014)CrossRefGoogle Scholar
  4. 4.
    Z.H. Liu, X.F. Dai, Z.Y. Zhu et al., Martensitic transformation and magnetic properties of Co-Ni-Al shape memory alloy ribbons. J. Phys. D 37(19), 2643 (2004)CrossRefGoogle Scholar
  5. 5.
    S. Chatterjee, M. Thakur, S. Giri et al., Transport, magnetic and structural investigations of Co-Ni-Al shape memory alloy. J. Alloys Compd. 456(1), 96–100 (2008)CrossRefGoogle Scholar
  6. 6.
    B. Bartova, D. Schryvers, Z. Yang et al., Microstructure and precipitates in as-cast Co38Ni33Al29 shape memory alloy. Scripta Mater. 57(1), 37–40 (2007)CrossRefGoogle Scholar
  7. 7.
    J.B. Lu, H. Shi, S. Sedlakova-Ignacova et al., Microstructure and precipitates in annealed Co38Ni33Al29, ferromagnetic shape memory alloy. J. Alloys Compd. 572(10), 5–10 (2013)CrossRefGoogle Scholar
  8. 8.
    H. Seiner, J. Kopeček, P. Sedlák et al., Microstructure, martensitic transformation and anomalies in c’-softening in Co-Ni-Al ferromagnetic shape memory alloys. Acta Mater. 61(15), 5869–5876 (2013)CrossRefGoogle Scholar
  9. 9.
    G.J. Pataky, E. Ertekin, H. Sehitoglu, Elastocaloric cooling potential of NiTi, Ni2FeGa, and CoNiAl. Acta Mater. 96, 420–427 (2015)CrossRefGoogle Scholar
  10. 10.
    S. Singh, R.K. Roy, B. Mahato et al., Effect of Al incorporation for Co on the gamma-beta phase boundary of rapidly solidified CoNiAl ferromagnetic shape memory alloys. J. Magn. Magn. Mater. 368(11), 379–383 (2014)CrossRefGoogle Scholar
  11. 11.
    J. Ju, F. Xue, J. Zhou et al., Microstructure and mechanical properties change by rare earth Dy added in as-cast Co-Ni-Al ferromagnetic shape memory alloys. Mater. Sci. Eng. A 616, 196–200 (2014)CrossRefGoogle Scholar
  12. 12.
    J. Liu, J.G. Li, Microstructure, shape memory effect and mechanical properties of rapidly solidified Co-Ni-Al magnetic shape memory alloys. Mater. Sci. Eng. A 455(16), 423–432 (2007)CrossRefGoogle Scholar
  13. 13.
    J. Liu, H. Zheng, Y. Huang et al., Microstructure and magnetic field induced strain of directionally solidified ferromagnetic shape memory CoNiAl alloys. Scripta Mater. 53(1), 29–33 (2005)CrossRefGoogle Scholar
  14. 14.
    R.D. Dar, H. Yan, Y. Chen, Grain boundary engineering of Co-Ni-Al, Cu-Zn-Al, and Cu-Al-Ni shape memory alloys by intergranular precipitation of a ductile solid solution phase. Scripta Mater. 115, 113–117 (2016)CrossRefGoogle Scholar
  15. 15.
    K.R. Reddy, B.C. Sin, H.Y. Chi et al., A new one-step synthesis method for coating multi-walled carbon nanotubes with cuprous oxide nanoparticles. Scripta Mater. 58(11), 1010–1013 (2008)CrossRefGoogle Scholar
  16. 16.
    K.R. Reddy, W. Park, B.C. Sin et al., Synthesis of electrically conductive and superparamagnetic monodispersed iron oxide-conjugated polymer composite nanoparticles by in situ chemical oxidative polymerization. J. Colloid Interface Sci. 335(1), 34–39 (2009)CrossRefGoogle Scholar
  17. 17.
    Y.P. Zhang, S.H. Lee, K.R. Reddy et al., Synthesis and characterization of core-shell SiO2 nanoparticles/poly(3-aminophenylboronic acid) composites. J. Appl. Polym. Sci. 104(4), 2743–2750 (2007)CrossRefGoogle Scholar
  18. 18.
    K.R. Reddy, K.P. Lee, A.I. Gopalan, Self-assembly approach for the synthesis of electro-magnetic functionalized Fe3O4/polyaniline nanocomposites: effect of dopant on the properties. Colloids Surf. A 320(1–3), 49–56 (2008)CrossRefGoogle Scholar
  19. 19.
    K.R. Reddy, V.G. Gomes, M. Hassan, Carbon functionalized TiO2 nanofibers for high efficiency photo catalysis. Mater. Res. Express 1(1), 015012 (2014)CrossRefGoogle Scholar
  20. 20.
    K.R. Reddy, M. Hassan, V.G. Gomes, Hybrid nanostructures based on titanium dioxide for enhanced photo catalysis. Appl. Catal. A 489, 1–16 (2015)CrossRefGoogle Scholar
  21. 21.
    K. Liu, P. Bai, M.Z. Bazant et al., A soft non-porous separator and its effectiveness in stabilizing Li metal anodes cycling at 10 mA cm−2 observed in situ in a capillary cell. J. Mater. Chem. A 5(9), 4300–4307 (2017)CrossRefGoogle Scholar
  22. 22.
    R.L. Yu, S.C. Kim, H.I. Lee et al., Graphite oxides as effective fire retardants of epoxy resin. Macromol. Res. 19(1), 66–71 (2011)CrossRefGoogle Scholar
  23. 23.
    J. Zhu, X. Zhu, Z. Zhang et al., Reversible addition-fragmentation chain transfer polymerization of styrene under microwave irradiation. J. Polym. Sci. A 44(23), 6810–6816 (2006)CrossRefGoogle Scholar
  24. 24.
    A.M. Showkat, Y.P. Zhang, S.K. Min et al., Analysis of heavy metal toxic ions by adsorption onto amino-functionalized ordered mesoporous silica. Bull. Korean Chem. Soc. 28(11), 1985–1992 (2007)CrossRefGoogle Scholar
  25. 25.
    X. Li, Y. Fautrelle, A. Gagnoud et al., Effect of a weak transverse magnetic field on solidification structure during directional solidification. Acta Mater. 64(2), 367–381 (2014)CrossRefGoogle Scholar
  26. 26.
    H. Li et al., Effect of a transverse magnetic field on solidification structure in directionally solidified Al-40 wt.% Cu alloys. J. Mater. Res. 31(2), 213–221 (2016)CrossRefGoogle Scholar
  27. 27.
    J. Wang, Y. He, J. Li et al., Strong magnetic field effect on the nucleation of a highly undercooled Co-Sn melt. Sci. Rep. 7(1), 4958 (2017)CrossRefGoogle Scholar
  28. 28.
    J. Wang, Y. Sheng, Y. Fautrelle et al., Refinement and growth enhancement of Al2Cu phase during magnetic field assisting directional solidification of hypereutectic Al-Cu alloy. Sci. Rep. (2016). CrossRefGoogle Scholar
  29. 29.
    J. Wang, Y. He, J. Li et al., Reexaminations of the effects of magnetic field on the nucleation of undercooled Cu melt. Jpn. J. Appl. Phys. 55(10), 105601 (2016)CrossRefGoogle Scholar
  30. 30.
    J. Wang, J. Li, H. Kou et al., Instability pattern formation in a liquid metal under high magnetic fields. Sci. Rep. 7(1), 2248 (2017)CrossRefGoogle Scholar
  31. 31.
    Y.Y. Gong et al., Textured, dense and giant magnetostrictive alloy from fissile polycrystalline. Acta Mater. 98, 113–118 (2015)CrossRefGoogle Scholar
  32. 32.
    Q. Wang, T. Liu, K. Wang et al., Progress on high magnetic field-controlled transport phenomena and their effects on solidification microstructure. ISIJ Int. 54(3), 516–525 (2014)CrossRefGoogle Scholar
  33. 33.
    X. Li, A. Gagnoud, Z. Ren et al., Investigation of thermoelectric magnetic convection and its effect on solidification structure during directional solidification under a low axial magnetic field. Acta Mater. 57(7), 2180–2197 (2009)CrossRefGoogle Scholar
  34. 34.
    X. Li, Y. Fautrelle, Z. Ren, Influence of an axial high magnetic field on the liquid–solid transformation in Al-Cu hypoeutectic alloys and on the microstructure of the solid. Acta Mater. 55(4), 1377–1386 (2007)CrossRefGoogle Scholar
  35. 35.
    X. Li, Y. Fautrelle, Z. Ren, Influence of a high magnetic field on columnar dendrite growth during directional solidification. Acta Mater. 55(16), 5333–5347 (2007)CrossRefGoogle Scholar
  36. 36.
    T.P. Hou, Y. Li, K.M. Wu, Effect of high magnetic field on alloy carbide precipitation in a Fe-C-Mo alloy. J. Alloys Compd. 527(12), 240–246 (2012)CrossRefGoogle Scholar
  37. 37.
    P. Yang, Y. Liu, X. Zhao et al., Electromagnetic wave absorption properties for FeCoNiCr alloy powders with magnetic field heat treatment. J. Mater. Sci.: Mater. Electron. 28(13), 1–9 (2017)Google Scholar
  38. 38.
    C. Li, G. Guo, Z. Yuan et al., Chemical segregation and coarsening of γ′ precipitates in Ni-based superalloy during heat treatment in alternating magnetic field. J. Alloys Compd. 720, 272–276 (2017)CrossRefGoogle Scholar
  39. 39.
    Y. Yuan, Q. Wang, K. Iwai et al., Isothermal heat treatments of an Al-4.8 mass% Cu alloy under high magnetic fields. J. Alloys Compd. 560(4), 127–131 (2013)CrossRefGoogle Scholar
  40. 40.
    X. Li, X. Bao, Y. Liu et al., Tailoring magnetostriction with various directions for directional solidification Fe82Ga15Al3 alloy by magnetic field heat treatment. Appl. Phys. Lett. 111(16), 162402 (2017)CrossRefGoogle Scholar
  41. 41.
    K. Wang, Q. Wang, C. Wang et al., Formation of aligned two-phase microstructure in Fe-0.25 mass% C alloy under gradient high magnetic fields. Mater. Lett. 62(10), 1466–1468 (2008)CrossRefGoogle Scholar
  42. 42.
    K. Ishida, R. Kainuma, N. Ueno et al., Ductility enhancement in NiAl (B2)-base alloys by microstructural control. Metall. Trans. A 22(2), 441–446 (1991)CrossRefGoogle Scholar
  43. 43.
    R. Kainuma, M. Ise, C.C. Jia et al., Phase equilibria and microstructural control in the Ni-Co-Al system. Intermetallics 4(8), S151–S158 (1996)CrossRefGoogle Scholar
  44. 44.
    H. Morito, A. Fujita, K. Fukamichi et al., Magnetocrystalline anisotropy in single-crystal Co-Ni-Al ferromagnetic shape-memory alloy. Appl. Phys. Lett. 81(9), 1657–1659 (2002)CrossRefGoogle Scholar
  45. 45.
    J. Wang, Y.X. He, J.S. Li et al., Experimental platform for solidification and in-situ magnetization measurement of undercooled melt under strong magnetic field. Rev. Sci. Instrum. 86(2), 025102 (2015)CrossRefGoogle Scholar
  46. 46.
    R. Khan, M.U. Rahman, Z.U. Rahman et al., Effect of air annealing on the structure, dielectric and magnetic properties of (Co, Ni) co-doped SnO2, nanoparticles. J. Mater. Sci.: Mater. Electron. 27(10), 10532–10540 (2016)Google Scholar
  47. 47.
    I.V. Gervasyeva, E. Beaugnon, V.A. Milyutin et al., Formation of structure and crystallographic texture in Fe-50% Ni thin tapes under high magnetic field annealing. Phys. B 468–469, 66–71 (2015)CrossRefGoogle Scholar
  48. 48.
    N. Zhang, G. Li, X. Wang et al., The influence of annealing temperature on hyperfine magnetic field and saturation magnetization of Fe-Si-Al-Cr flake-shaped particles. J. Alloys Compd. 672, 176–181 (2016)CrossRefGoogle Scholar
  49. 49.
    J. Kopeček, V. Kopecký, M. Landa et al., Structural changes in Co-based F-SMA. Mater. Sci. Forum 739, 416–420 (2013)CrossRefGoogle Scholar
  50. 50.
    L. Song, G.F. Wang, Z.Q. Ou et al., Magnetic properties and magnetocaloric effect of MnFeP0.5Ge0.5−xSix, compounds. J. Alloys Compd. 474(1–2), 388–390 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China
  2. 2.Xi’an Superconducting Magnet Technology Co., Ltd.Xi’anPeople’s Republic of China
  3. 3.Northwest Institute for Nonferrous Metal ResearchXi’anPeople’s Republic of China
  4. 4.Université Grenoble Alpes, LNCMIGrenobleFrance
  5. 5.CNRS, LNCMIGrenobleFrance

Personalised recommendations