Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19484–19490 | Cite as

Effects of Sn grain size on intermetallic compounds formation in 5 µm diameter Cu/Sn pillar bumps

  • Kai Chen
  • Dongfan Wang
  • Huiqin LingEmail author
  • Anmin Hu
  • Ming Li
  • Wenqi Zhang
  • Liqiang Cao


Uniform 5 µm diameter Cu/Sn micro-bump array has been fabricated by multilayer electrodeposition, and the effect of Sn grain orientation and size on Cu6Sn5 and Cu3Sn growth have been studied through FIB–SEM and electron backscatter diffraction. The solder layer in Ф5 µm Cu/matte Sn micro-bump we fabricated contains only four to five columnar Sn grains with no obvious preferred orientation and there is no significant difference in the growth of Cu6Sn5 in different oriented Sn grains. However, the Sn grain size has much more effect on intermetallic compound (IMC) growth. At 150 °C, the diffusion coefficient of Cu/bright-Sn system(~ 200 nm Sn) is calculated to be 13.09 × 10−17 m2 s−1, nearly three times that of Cu/matte–Sn system (2–5 µm Sn), about 4.51 × 10−17m2 s−1. Also, a simple model of boundary diffusion controlled IMC growth is proposed to explore the mechanism of grain size effect. Large Sn grain size will slow down the interfacial reaction in micro-bump due to low grain boundary density and large bulk diffusion distance.



This work is sponsored by the National Natural Science Foundation of China (CN) (Grant No. 61376107) and National Basic Research Program of China (973 Program, Grant No. 2015CB057200). The authors would like to acknowledge the Instrumental Analysis Center of Shanghai Jiao Tong University, for the technical support.


  1. 1.
    D. Liu, S. Park, J. Electron. Packag. 136, 014001 (2014)CrossRefGoogle Scholar
  2. 2.
    Y. Li, D. Goyal, J. Electron. Mater. 45, 116 (2016)CrossRefGoogle Scholar
  3. 3.
    W.W. Shen, K.N. Chen, Nanoscale Res. Lett. 12, 56 (2017)CrossRefGoogle Scholar
  4. 4.
    W. Koh, B. Lin, J. Tai, in Copper Pillar Bump Technology Progress Overview (IEEE Press, Shanghai, 2011), p. 1Google Scholar
  5. 5.
    C. Chen, D. Yu, K.-N. Chen, MRS Bull. 40, 257 (2015)CrossRefGoogle Scholar
  6. 6.
    Y. Liu, Y.-C. Chu, K.N. Tu, Acta Mater. 117, 146 (2016)CrossRefGoogle Scholar
  7. 7.
    Y. Chen, C. Chung, C.-R. Yang, C. Kao, Microelectron. Reliab. 53, 47 (2013)CrossRefGoogle Scholar
  8. 8.
    C.C. Wei, C.F. Chen, P.C. Liu, C. Chen, J. Appl. Phys. 105, 023715 (2009)CrossRefGoogle Scholar
  9. 9.
    M.H. Lu, D.Y. Shih, P. Lauro, C. Goldsmith, D.W. Henderson, Appl. Phys. Lett. 92, 211909 (2008)CrossRefGoogle Scholar
  10. 10.
    B.F. Dyson, T.R. Anthony, D. Turnbull, J. Appl. Phys. 38, 3408 (1967)CrossRefGoogle Scholar
  11. 11.
    Y.-A. Shen, C. Chen, Scr. Mater. 128, 6 (2017)CrossRefGoogle Scholar
  12. 12.
    T.L. Yang, J.J. Yu, C.C. Li, Y.F. Lin, C.R. Kao, J. Alloys Compd. 627, 281 (2015)CrossRefGoogle Scholar
  13. 13.
    W.B. Pearson, P. Villars, L.D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (ASM International, Materials Park, OH, 1985)Google Scholar
  14. 14.
    S.J. Wang, L.H. Hsu, N.K. Wang, C.E. Ho, J. Electron. Mater. 43, 219 (2014)CrossRefGoogle Scholar
  15. 15.
    R. Labie, W. Ruythooren, J. Van Humbeeck, Intermetallics 15, 396 (2007)CrossRefGoogle Scholar
  16. 16.
    Y. Yuan, Y. Guan, D. Li, N. Moelans, J. Alloys Compd. 661, 282 (2016)CrossRefGoogle Scholar
  17. 17.
    M.Y. Guo, C.K. Lin, C. Chen, K.N. Tu, Intermetallics 29, 155 (2012)CrossRefGoogle Scholar
  18. 18.
    F.Y. Ouyang, C.L. Kao, J. Appl. Phys. 110, 022110 (2011)Google Scholar
  19. 19.
    W.-N. Hsu, F.-Y. Ouyang, Acta Mater. 81, 141 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Schaefer, R.A. Fournelle, J. Liang, J. Electron. Mater. 27, 1167 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kai Chen
    • 1
  • Dongfan Wang
    • 1
  • Huiqin Ling
    • 1
    Email author
  • Anmin Hu
    • 1
  • Ming Li
    • 1
  • Wenqi Zhang
    • 2
  • Liqiang Cao
    • 2
  1. 1.State Key Laboratory of Metal Matrix Composites, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Institute of Microelectronic of Chinese Academy of SciencesBeijingChina

Personalised recommendations