Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19454–19460 | Cite as

Fabrication and electrochemical performance of delafossite CuFeO2 particles as a stable anode material for lithium-ion batteries

  • Min Zhang
  • Guangping Zhu
  • Jianming Dai
  • Xuebin Zhu
  • Qiangchun Liu
  • Qiang Li
Article
  • 50 Downloads

Abstract

The delafossite CuFeO2 anode materials have been successfully synthesized by hydrothermal process with different temperatures. The X-ray diffraction patterns reveal that two structural polytypes of CuFeO2 with 3R-CuFeO2 and 2H-CuFeO2 are obtained. The results of field-emission scanning electronic microscopy confirm that all CuFeO2 crystals display both hexagonal and rhyombohedral morphologies, which are in good agreement with XRD results. It can be clearly observed that particles sizes of CuFeO2 are increased and the size distributions of particles become broader as hydrothermal temperature increasing. Electrochemical results show that the CuFeO2 particles synthesized at 180 °C for 24 h display the best electrochemical performance and superior cycle performance. The CuFeO2 materials obtained at 180 °C for 24 exhibit a high reversible capacity and high-rate capability (a reversible capability of 390, 276, 185, 133, and 85 mA h g− 1 at 0.1, 0.2, 0.5, 1, 2C, respectively) with good cycling performance (approximate 6.8% capacity loss after 500 cycles at 1C with a capacity retention of 124 mA h g− 1). The excellent electrochemical performance can be attributed to the small particle size and narrow size distributions. It is believed that obtained CuFeO2 crystals as anode materials with high reversible capacity, good rate capability and cyclic stability may be potential candidates for applying in lithium-ion batteries.

Notes

Acknowledgements

This work was financially supported by the National Nature Science Foundation of China (Grant No. 11374304), the Foundation of Educational Commission of Anhui Province (KJ2018A0393, KJ2016B004 and KJ2018A0394), and the Key Foundation of Educational Commission of Anhui Province (KJ2016SD53).

References

  1. 1.
    M. Armand, J.M. Tarascon, Nature 451, 652–657 (2008)CrossRefGoogle Scholar
  2. 2.
    H. Li, Z.X. Wang, L.Q. Chen, X.J. Huang, Adv. Mater. 21, 4593–4607 (2009)CrossRefGoogle Scholar
  3. 3.
    B. Dunn, H. Kamath, J.M. Tarascon, Science 334, 928–935 (2011)CrossRefGoogle Scholar
  4. 4.
    W. Waag, C. Fleischer, D.U. Sauer, J. Power Sources 258, 321–339 (2014)CrossRefGoogle Scholar
  5. 5.
    S. Pramanik, S. Anwar, J. Power Sources 313, 164–177 (2016)CrossRefGoogle Scholar
  6. 6.
    G. Zubi, R. Dufo-López, M. Carvalho, G. Pasaoglu, Renew. Sust. Energy Rev. 89, 292–308 (2018)CrossRefGoogle Scholar
  7. 7.
    Y.Q. Wang, L. Gu, Y.G. Guo, H. Li, X.Q. He, S. Tsukimoto, Y. Ikuhara, L.J. Wan, J. Am. Chem. Soc. 134, 7874–7879 (2012)CrossRefGoogle Scholar
  8. 8.
    E. Pohjalainen, J. Kallioinen, T. Kallio, J. Power Sources 279, 481–486 (2015)CrossRefGoogle Scholar
  9. 9.
    P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 407, 496–499 (2000)CrossRefGoogle Scholar
  10. 10.
    L. Lu, J.-Z. Wang, X.-B. Zhu, X.-W. Gao, H.-K. Liu, J. Power Sources 196, 7025–7029 (2011)CrossRefGoogle Scholar
  11. 11.
    M. Zhang, X.-W. Gao, Z.F. Zi, J.M. Dai, J.-Z. Wang, S.-L. Chou, C. Liang, X. Zhu, Y.P. Sun, H.-K. Liu, Electrochim. Acta 147, 143–150 (2014)CrossRefGoogle Scholar
  12. 12.
    W.C. Sheets, E. Mugnier, A. Barnabe, T.J. Marks, K.R. Poeppelmeier, Chem. Mater. 18, 7–20 (2006)CrossRefGoogle Scholar
  13. 13.
    C.T. Prewitt, R.D. Shannon, D.B. Rogers, Inorg. Chem. 10, 719–723 (1971)CrossRefGoogle Scholar
  14. 14.
    J.Y. Wang, Q.L. Deng, M.J. Li, K. Jiang, J.Z. Zhang, Z.G. Hu, J.H. Chu, Sci. Rep. 7, 8903 (2017)CrossRefGoogle Scholar
  15. 15.
    A.M. Sukeshini, H. Kobayashi, M. Tabuchi, H. Kageyama, Solid State Ionics 128, 33–41 (2000)CrossRefGoogle Scholar
  16. 16.
    Y. Dong, C. Cao, Y.S. Chui, J.A. Zapien, Chem. Commun. 50, 10151–10154 (2014)CrossRefGoogle Scholar
  17. 17.
    D.H. Xiong, Y.K. Qi, X.W. Li, X.X. Liu, H.Z. Tao, W. Chen, X.J. Zhao, RSC Adv. 5, 49280–49286 (2015)CrossRefGoogle Scholar
  18. 18.
    D.H. Xiong, X.W. Zeng, W.J. Zhang, H. Wang, X.J. Zhao, W. Chen, Y.B. Cheng, Inorg. Chem. 53, 4106–4116 (2014)CrossRefGoogle Scholar
  19. 19.
    D.H. Xiong, Q.Q. Zhang, S.K. Verma, X.-Q. Bao, H. Li, X.J. Zhao, Mater. Res. Bull. 83, 141–147 (2016)CrossRefGoogle Scholar
  20. 20.
    S.-L. Chou, J.-Z. Wang, H.-K. Liu, S.-X. Dou, J. Power Sources 182, 359–364 (2008)CrossRefGoogle Scholar
  21. 21.
    K. Qian, L. Tang, M. Wagemaker, Y.B. He, D. Liu, H. Li, R. Shi, B. Li, F. Kang, Adv. Sci. 4, 1700205 (2017)CrossRefGoogle Scholar
  22. 22.
    J.-H. Park, S.-W. Kang, T.-S. Kwon, H.S. Park, Ceram. Int. 44, 2683–2690 (2018)CrossRefGoogle Scholar
  23. 23.
    D.J. Lee, H. Lee, M.H. Ryou, G.B. Han, J.N. Lee, J. Song, J. Choi, K.Y. Cho, Y.M. Lee, J.K. Park, ACS Appl. Mater. Int. 5, 12005–12010 (2013)CrossRefGoogle Scholar
  24. 24.
    L. Zhang, J.W. Deng, L.F. Liu, W.P. Si, S. Oswald, L.X. Xi, M. Kundu, G.Z. Ma, T. Gemming, S. Baunack, F. Ding, C.L. Yan, O.G. Schmidt, Adv. Mater. 26, 4527–4532 (2014)CrossRefGoogle Scholar
  25. 25.
    D.H. Youn, Y.H. Choi, J.-H. Kim, S. Han, A. Heller, C.B. Mullins, ChemElectroChem, 5 (2018) 2419–2423CrossRefGoogle Scholar
  26. 26.
    P.F. Wang, P. Li, T.-F. Yi, X.T. Lin, Y.-R. Zhu, L.Y. Shao, M. Shui, N.B. Long, J. Shu, Ceram. Int. 41, 6668–6675 (2015)CrossRefGoogle Scholar
  27. 27.
    C.Q. Zhang, J.P. Tu, X.H. Huang, Y.F. Yuan, X.T. Chen, F. Mao, J. Alloys Compd. 441, 52–56 (2007)CrossRefGoogle Scholar
  28. 28.
    Y.C. Yang, B.H. Qiao, X.M. Yang, L.B. Fang, C.C. Pan, W.X. Song, H.S. Hou, X.B. Ji, Adv. Funct. Mater. 24, 4349–4356 (2014)CrossRefGoogle Scholar
  29. 29.
    P.F. Zhang, M. Chen, X. Shen, Q.H. Wu, X. Zhang, L. Huan, G.W. Diao, Electrochim. Acta 204, 92–99 (2016)CrossRefGoogle Scholar
  30. 30.
    G.B. Xu, W. Li, L.W. Yang, X.L. Wei, J.W. Ding, J.X. Zhong, P.K. Chu, J. Power Sources 276, 247–254 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and Electronics InformationHuaibei Normal UniversityHuaibeiPeople’s Republic of China
  2. 2.Key Laboratory of Materials Physics, Institute of Solid State PhysicsChinese Academy of SciencesHefeiPeople’s Republic of China

Personalised recommendations