Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 18891–18904 | Cite as

Carbon nanoscrolls: synthesis and applications

  • Hongdong Liu
  • Tao Le
  • Lei ZhangEmail author
  • Maowen XuEmail author


Carbon nanoscrolls (CNSs), as an emerging family member of carbon nanomaterials, are a spirally wrapped 2D graphene sheet with a 1D tubular structure resembling that of multi-walled carbon nanotube. Due to its unique topological structure, CNSs not only share the remarkable mechanical, electronic properties and thermal conductivity exhibited by carbon nanotubes and graphene but also are expected to exhibit novel features. So they have attracted much attention from material scientists, chemists and physicists. Here, we review the research advances of preparative strategies of 1D CNSs with arc-discharge, CVD, self-scrolling, freeze-drying, cold quenching, functional groups/nanoparticles modification, mechanical ball milling, ultrasound-assisted and Langmuir–Blodgett methods, and potential applications in lithium ion/sulfur bateries, fuel Cells, supercapacitors, hydrogen storage, sensors, oscillators, photocatalytic materials and the other applications. We believe that CNSs will become another bright star after CNTs and graphene in the foreseeable future.



This work is financially supported by the National Natural Science Foundation of China (Grant No. 31671939), the Open Project Program from Chongqing Key Laboratory of Micro/Nano Materials Engineering (Grant No. KF201604), Technology and Basic and Frontier Research Program of Chongqing Municipality (Grant No. cstc2018jcyjAX0701) and (Grant No. cstc2017jcyjAX0326), and Major Program of Chongqing University of Arts and Sciences (Grant No. P2017XC06).


  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666–669 (2004)Google Scholar
  2. 2.
    F.G. Brunetti, H. Isla, J. Arago, E. Orti, E.M. Perez, N. Martin, Chemistry 19, 9843–9848 (2013)Google Scholar
  3. 3.
    J. Annett, G.L.W. Cross, Nature 535, 271–275 (2016)Google Scholar
  4. 4.
    Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Adv. Mater. 22, 3906–3924 (2010)Google Scholar
  5. 5.
    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902–907 (2008)Google Scholar
  6. 6.
    C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385–388 (2008)Google Scholar
  7. 7.
    A.S. Mayorov, R.V. Gorbachev, S.V. Morozov, L. Britnell, R. Jalil, L.A. Ponomarenko, P. Blake, K.S. Novoselov, K. Watanabe, T. Taniguchi, A.K. Geim, Nano Lett. 11, 2396–2399 (2011)Google Scholar
  8. 8.
    P. Suvarnaphaet, S. Pechprasarn, Sensors (Basel, Switzerland) 17, 1–24 (2017)Google Scholar
  9. 9.
    G. Gorgolis, C. Galiotis, 2d Materials 4, 1–21 (2017)Google Scholar
  10. 10.
    J. Wu, W. Pisula, K. Muellen, Chem. Rev. 107, 718–747 (2007)Google Scholar
  11. 11.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183–191 (2007)Google Scholar
  12. 12.
    J.L. Atwood, G.W. Gokel, Nature 354, 354–355 (1991)Google Scholar
  13. 13.
    G. Zhong, R. Xie, J. Yang, J. Robertson, Carbon 67, 680–687 (2014)Google Scholar
  14. 14.
    A. Perez, E. del Pino, L. Gyoergy, B. Cabana, G. Ballesteros, Tobias, Carbon 50, 4450–4458 (2012)Google Scholar
  15. 15.
    A.E. Islam, P. Nikolaev, P.B. Amama, S. Saber, D. Zakharov, D. Huffman, M. Erford, G. Sargent, S.L. Semiatin, E.A. Stach, B. Maruyama, Nano Lett. 14, 4997–5003 (2014)Google Scholar
  16. 16.
    D. Luxembourg, G. Flamant, D. Laplaze, J.L. Sauvajol, S. Enouz, A. Loiseau, Fuller. Nanotubes Carbon Nanostruct. 15, 257–266 (2007)Google Scholar
  17. 17.
    R. Das Gupta, C. Schwandt, D.J. Fray, Carbon 70, 142–148 (2014)Google Scholar
  18. 18.
    S. Ye, F. Wu, X.-R. Ye, Y. Lin, J. Nanosci. Nanotechnol. 9, 2781–2794 (2009)Google Scholar
  19. 19.
    X.S. Li, H.W. Zhu, B. Jiang, J. Ding, C.L. Xu, D.H. Wu, Carbon 41, 1664–1666 (2003)Google Scholar
  20. 20.
    A. Beitollahi, S. Pilehvari, M.A.F. Sani, H. Moradi, M. Akbarnejad, Ceram. Int. 38, 3273–3280 (2012)Google Scholar
  21. 21.
    S. Manafi, H. Nadali, H.R. Irani, Mater. Lett. 62, 4175–4176 (2008)Google Scholar
  22. 22.
    A. Taraghi Osguei, M.T. Ahmadian, M. Asghari, N.M. Pugno, Materials (Basel, Switzerland) 10, 1–25 (2017)Google Scholar
  23. 23.
    Y. Cheng, L.D. Koh, F. Wang, D. Li, B. Ji, J. Yeo, G. Guan, M.Y. Han, Y.W. Zhang, Nanoscale 9, 9181–9189 (2017)Google Scholar
  24. 24.
    P. Yadav, S. Warule, J. Jog, S. Ogale, Solid State Commun. 152, 2092–2095 (2012)Google Scholar
  25. 25.
    T.D. Daff, S.P. Collins, H. Dureckova, E. Perim, M.S. Skaf, D.S. Galvao, T.K. Woo, Carbon 101, 218–225 (2016)Google Scholar
  26. 26.
    Y. Wang, H.F. Zhan, C. Yang, Y. Xiang, Y.Y. Zhang, Comput. Mater. Sci. 96, 300–305 (2015)Google Scholar
  27. 27.
    G. Mpourmpakis, E. Tylianakis, G.E. Froudakis, Nano Lett. 7, 1893–1897 (2007)Google Scholar
  28. 28.
    R. Bacon, J. Appl. Phys. 31, 283–290 (1960)Google Scholar
  29. 29.
    V.P. Dravid, X. Lin, Y. Wang, X.K. Wang, A. Yee, J.B. Ketterson, R.P.H. Chang, Science 259, 1601–1604 (1993)Google Scholar
  30. 30.
    S.F. Braga, V.R. Coluci, S.B. Legoas, R. Giro, D.S. Galvao, R.H. Baughman, Nano Lett. 4, 881–884 (2004)Google Scholar
  31. 31.
    Z. Xu, B. Zheng, J. Chen, C. Gao, Chem. Mater. 26, 6811–6818 (2014)Google Scholar
  32. 32.
    N. Patra, B. Wang, P. Kral, Nano Lett. 9, 3766–3771 (2009)Google Scholar
  33. 33.
    B.V.C. Martins, D.S. Galvao, Nanotechnology 21, 75710 (2010)Google Scholar
  34. 34.
    V.B. Shenoy, C.D. Reddy, Y.-W. Zhang, ACS Nano 4, 4840–4844 (2010)Google Scholar
  35. 35.
    Z. Zhang, T. Li, Appl. Phys. Lett. 97, 283–288 (2010)Google Scholar
  36. 36.
    O. Zhou, R.M. Fleming, D.W. Murphy, C.H. Chen, R.C. Haddon, A.P. Ramirez, S.H. Glarum, Science 263, 1744–1747 (1994)Google Scholar
  37. 37.
    A.R. Muhammad Musaddique, I. Javed, J. Encapsul. Adsorpt. Sci. 1, 29–34 (2011)Google Scholar
  38. 38.
    M. Takizawa, S. Bandow, M. Yudasaka, Y. Ando, H. Shimoyama, S. Iijima, Chem. Phys. Lett. 326, 351–357 (2000)Google Scholar
  39. 39.
    J.G. Lavin, S. Subramoney, R.S. Ruoff, S. Berber, D. Tomanek, Carbon 40, 1123–1130 (2002)Google Scholar
  40. 40.
    B.A. Kakade, H. Allouche, S. Mahima, B.R. Sathe, V.K. Pillai, Carbon 46, 567–576 (2008)Google Scholar
  41. 41.
    A.K. Schaper, H. Hou, M. Wang, Y. Bando, D. Golberg, Carbon 49, 1821–1828 (2011)Google Scholar
  42. 42.
    A.L. Chuvilin, V.L. Kuznetsov, A.N. Obraztsov, Carbon 47, 3099–3105 (2009)Google Scholar
  43. 43.
    J. Ning, D. Wang, Y. Chai, X. Feng, M. Mu, L. Guo, J. Zhang, Y. Hao, Nanotechnology 28, 284001 (2017)Google Scholar
  44. 44.
    G. Cheng, I. Calizo, X. Liang, B.A. Sperling, A.C. Johnston-Peck, W. Li, J.E. Maslar, C.A. Richter, A.R.H. Walker, Carbon 76, 257–265 (2014)Google Scholar
  45. 45.
    H. Liu, J. Huang, X. Li, J. Liu, Y. Zhang, J. Wuhan Univ. Technol.-Mater. Sci. Ed. 28, 220–223 (2013)Google Scholar
  46. 46.
    X. Xie, L. Ju, X. Feng, Y. Sun, R. Zhou, K. Liu, S. Fan, Q. Li, K. Jiang, Nano Lett. 9, 2565–2570 (2009)Google Scholar
  47. 47.
    Q. Li, Z. Li, M. Chen, Y. Fang, Nano Lett. 9, 2129–2132 (2009)Google Scholar
  48. 48.
    H.Q. Zhou, C.Y. Qiu, H.C. Yang, F. Yu, M.J. Chen, L.J. Hu, Y.J. Guo, L.F. Sun. Chem. Phys. Lett. 501, 475–479 (2011)Google Scholar
  49. 49.
    M.E. Schmidt, A.M.M. Hammam, T. Iwasaki, T. Kanzaki, M. Muruganathan, S. Ogawa, H. Mizuta, Nanotechnology 29, 235605 (2018)Google Scholar
  50. 50.
    L.J. Yi, Y.Y. Zhang, C.M. Wang, T.C. Chang, J. Appl. Phys. 115, 204307 (2014)Google Scholar
  51. 51.
    Q. Fang, X. Zhou, W. Deng, Y. Liu, Z. Zheng, Z. Liu, Small 13, 68–124 (2017)Google Scholar
  52. 52.
    P. Zuo, W. Zhang, J. Hua, Y. Ma, C. Du, X. Cheng, Y. Gao, G. Yin, Electrochim. Acta 222, 1861–1869 (2016)Google Scholar
  53. 53.
    X. Jin, X. Wang, Y. Zhang, H. Wang, Y. Yang, Int. J. Hydrogen Energy 43, 13440–13449 (2018)Google Scholar
  54. 54.
    Z.H. Kang, E.B. Wang, L. Gao, S.Y. Lian, M. Jiang, C.W. Hu, L. Xu, J. Am. Chem. Soc. 125, 13652–13653 (2003)Google Scholar
  55. 55.
    K. Mohanapriya, N. Jha, Appl. Surf. Sci. 449, 461–467 (2018)Google Scholar
  56. 56.
    L. Gao, Z. Zhang, J. Zhao, J. Zhou, Z. Miao, W. Si, S. Zhuo, RSC Adv. 8, 19164–19170 (2018)Google Scholar
  57. 57.
    J. Zhao, B. Yang, Z. Zheng, J. Yang, Z. Yang, P. Zhang, W. Ren, X. Yan, ACS Appl. Mater. Interfaces 6, 9890–9896 (2014)Google Scholar
  58. 58.
    B. Yang, J. Zhao, J. Chen, M. He, S. Xu, RSC Adv. 5, 57906–57911 (2015)Google Scholar
  59. 59.
    Y. Liu, A.H. Siddique, H. Huang, Q. Fang, W. Deng, X. Zhou, H. Lu, Z.P. Liu, Nanotechnology 28, 465401 (2017)Google Scholar
  60. 60.
    Y. Zhang, C. Zhao, Z. Zeng, J.M. Ang, B. Che, Z. Wang, X. Lu, Electrochim. Acta 278, 156–164 (2018)Google Scholar
  61. 61.
    V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, K.S. Kim, Chem. Rev. 112, 6156–6214 (2012)Google Scholar
  62. 62.
    S. Zhu, T. Li, J. Phys. D-Appl. Phys. 46, 075301 (2013)Google Scholar
  63. 63.
    X. Sun, Z. Liu, K. Welsher, J.T. Robinson, A. Goodwin, S. Zaric, H. Dai, Nano Res. 1, 203–212 (2008)Google Scholar
  64. 64.
    C. Hontorialucas, A.J. Lopezpeinado, J.D.D. Lopezgonzalez, M.L. Rojascervantes, R.M. Martinaranda, Carbon 33, 1585–1592 (1995)Google Scholar
  65. 65.
    Y.K. Kim, D.H. Min, Carbon 48, 4283–4288 (2010)Google Scholar
  66. 66.
    H.W. Liang, S. Liu, S.H. Yu, Adv. Mater. 22, 3925–3937 (2010)Google Scholar
  67. 67.
    X. Wang, D.-P. Yang, G. Huang, P. Huang, G. Shen, S. Guo, Y. Mei, D. Cui, J. Mater. Chem. 22, 17441–17444 (2012)Google Scholar
  68. 68.
    T. Sharifi, E. Gracia-Espino, H.R. Barzegar, X. Jia, F. Nitze, G. Hu, P. Nordblad, C.W. Tai, T. Wagberg, Nat. Commun. 4, 1–9 (2013)Google Scholar
  69. 69.
    I.Y. Jeon, Y.R. Shin, G.J. Sohn, H.J. Choi, S.Y. Bae, J. Mahmood, S.M. Jung, J.M. Seo, M.J. Kim, D.W. Chang, L. Dai, J.B. Baek, Proc. Natl. Acad. Sci. USA 109, 5588–5593 (2012)Google Scholar
  70. 70.
    X. Wang, G. Sun, P. Routh, D.-H. Kim, W. Huang, P. Chen, Chem. Soc. Rev. 43, 7067–7098 (2014)Google Scholar
  71. 71.
    M. Khan, M. Amjad, A. Khan, R. Ud-Din, I. Ahmad, T. Subhani, J. Mater. Res. 32, 2055–2066 (2017)Google Scholar
  72. 72.
    W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, G. Chen, J. Mater. Chem. 20, 5817–5819 (2010)Google Scholar
  73. 73.
    Y. Chen, M.J. Conway, J.D. Fitz Gerald, Appl. Phys. A 76, 633–636 (2003)Google Scholar
  74. 74.
    Y. Chen, M.J. Conway, J.D. Fitz Gerald, J.S. Williams, L.T. Chadderton, Carbon 42, 1543–1548 (2004)Google Scholar
  75. 75.
    J.L. Li, Q.S. Peng, G.Z. Bai, W. Jiang, Carbon 43, 2830–2833 (2005)Google Scholar
  76. 76.
    G. Cravotto, P. Cintas, Chemistry 16, 5246–5259 (2010)Google Scholar
  77. 77.
    L.M. Viculis, J.J. Mack, R.B. Kaner, Science 299, 1361–1361 (2003)Google Scholar
  78. 78.
    H. Shioyama, T. Akita, Carbon 41, 179–181 (2003)Google Scholar
  79. 79.
    D. Roy, E. Angeles-Tactay, R.J.C. Brown, S.J. Spencer, T. Fry, T.A. Dunton, T. Young, M.J.T. Milton, Chem. Phys. Lett. 465, 254–257 (2008)Google Scholar
  80. 80.
    F. Zeng, Y. Kuang, Y. Wang, Z. Huang, C. Fu, H. Zhou, Adv. Mater. 23, 4929–4932 (2011)Google Scholar
  81. 81.
    M.V. Savoskin, V.N. Mochalin, A.P. Yaroshenko, N.I. Lazareva, T.E. Konstantinova, I.V. Barsukov, L.G. Prokofiev, Carbon 45, 2797–2800 (2007)Google Scholar
  82. 82.
    Y. Gao, X. Chen, H. Xu, Y. Zou, R. Gu, M. Xu, A.K.Y. Jen, H. Chen, Carbon 48, 4475–4482 (2010)Google Scholar
  83. 83.
    X. Li, Y. Zhang, T. Li, Q. Zhong, H. Li, J. Huang, J. Power Sources 268, 372–378 (2014)Google Scholar
  84. 84.
    L. Mai, Q. Wei, Q. An, X. Tian, Y. Zhao, X. Xu, L. Xu, L. Chang, Q. Zhang, Adv. Mater. 25, 2969–2973 (2013)Google Scholar
  85. 85.
    H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, Electrochem. Commun. 11, 1158–1161 (2009)Google Scholar
  86. 86.
    H. Karimi, M.T. Ahmadi, E. Khosrowabadi, R. Rahmani, M. Saeidimanesh, R. Ismail, S.D. Naghib, E. Akbari, RSC Adv. 4, 16153–16162 (2014)Google Scholar
  87. 87.
    H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, ACS Nano 2, 463–470 (2008)Google Scholar
  88. 88.
    A.Y. Kasumov, R. Deblock, M. Kociak, B. Reulet, H. Bouchiat, I.I. Khodos, Y.B. Gorbatov, V.T. Volkov, C. Journet, M. Burghard, Science 284, 1508–1511 (1999)Google Scholar
  89. 89.
    K. Sint, B. Wang, P. Kral, J. Am. Chem. Soc. 130, 16448–19449 (2008)Google Scholar
  90. 90.
    Z. Liu, J.T. Robinson, X. Sun, H. Dai, J. Am. Chem. Soc. 130, 10876–10877 (2008)Google Scholar
  91. 91.
    D. Eder, Chem. Rev. 110, 1348–1385 (2010)Google Scholar
  92. 92.
    Y. Chen, J. Lu, Z. Gao, J. Phys. Chem. C 111, 1625–1630 (2007)Google Scholar
  93. 93.
    A.K. Schaper, M.S. Wang, Z. Xu, Y. Bando, D. Golberg, Nano Lett. 11, 3295–3300 (2011)Google Scholar
  94. 94.
    T.S. Li, M.F. Lin, S.C. Chang, H.C. Chung, Phys. Chem. Chem. Phys. 13, 6138–6144 (2011)Google Scholar
  95. 95.
    H.Y. Song, S.F. Geng, M.R. An, X.W. Zha, J. Appl. Phys. 113, 164305 (2013)Google Scholar
  96. 96.
    T. Wang, C. Zhang, S. Chen, J. Nanosci. Nanotechnol. 13, 1136–1140 (2013)Google Scholar
  97. 97.
    M.M. Zaeri, S. Ziaei-Rad, RSC Adv. 4, 22995–23001 (2014)Google Scholar
  98. 98.
    L. Lai, J. Lu, L. Wang, G. Luo, J. Zhou, R. Qin, Y. Chen, H. Li, Z. Gao, G. Li, W.N. Mei, Y. Maeda, T. Akasaka, S. Sanvito, Nano Res. 2, 844–850 (2009)Google Scholar
  99. 99.
    T.S. Li, M.F. Lin, Y.C. Huang, T.C. Lin, Phys. Lett. A 376, 515–520 (2012)Google Scholar
  100. 100.
    M. Yan, F. Wang, C. Han, X. Ma, X. Xu, Q. An, L. Xu, C. Niu, Y. Zhao, X. Tian, P. Hu, H. Wu, L. Mai, J. Am. Chem. Soc. 135, 18176–18182 (2013)Google Scholar
  101. 101.
    X. Li, Y. Zhang, T. Li, Q. Zhong, H. Li, J. Huang, Electrochim. Acta 147, 40–46 (2014)Google Scholar
  102. 102.
    S. Yoo, J. Lee, J.M. Kim, C.-Y. Seong, K.-D. Seong, Y. Piao, J. Electroanal. Chem. 780, 19–25 (2016)Google Scholar
  103. 103.
    K. Feng, B. Tang, P. Wu, ACS Appl. Mater. Interfaces 5, 1481–1488 (2013)Google Scholar
  104. 104.
    Y. Liu, Y. Xia, H. Yang, Y. Zhang, M. Zhao, G. Pan, Nanotechnology 24, 235401 (2013)Google Scholar
  105. 105.
    F. Zeng, Y. Kuang, G. Liu, R. Liu, Z. Huang, C. Fu, H. Zhou, Nanoscale 4, 3997–4001 (2012)Google Scholar
  106. 106.
    W. Zhou, J. Liu, T. Chen, K.S. Tan, X. Jia, Z. Luo, C. Cong, H. Yang, C.M. Li, T. Yu, Phys. Chem. Chem. Phys. 13, 14462–14465 (2011)Google Scholar
  107. 107.
    B.N. Zheng, C. Gao, New Carbon Mater. 31, 315–320 (2016)Google Scholar
  108. 108.
    S.F. Braga, V.R. Coluci, R.H. Baughman, D.S. Galvao, Chem. Phys. Lett. 441, 78–82 (2007)Google Scholar
  109. 109.
    J. Huang, C.H. Wong, Comput. Mater. Sci. 102, 7–13 (2015)Google Scholar
  110. 110.
    L. Meng, Y. Xia, W. Liu, L. Zhang, P. Zou, Y. Zhang, Electrochim. Acta 152, 330–337 (2015)Google Scholar
  111. 111.
    H. Li, J. Wu, X. Qi, Q. He, C. Liusman, G. Lu, X. Zhou, H. Zhang, Small 9, 382–386 (2013)Google Scholar
  112. 112.
    X. Shi, N.M. Pugno, Y. Cheng, H. Gao, Appl. Phys. Lett. 95, 163113 (2009)Google Scholar
  113. 113.
    Z. Zhang, T. Li, Nanoscale Res. Lett. 6, 1–11 (2011)Google Scholar
  114. 114.
    Y. Cheng, X. Shi, N.M. Pugno, H. Gao, Physica E 44, 955–959 (2012)Google Scholar
  115. 115.
    S. Pu, R. Zhu, H. Ma, D. Deng, X. Pei, F. Qi, W. Chu, Appl. Catal. B 218, 208–219 (2017)Google Scholar
  116. 116.
    F. Li, B. Dong, Ceram. Int. 43, 16007–16012 (2017)Google Scholar
  117. 117.
    R. Zhu, F. Tian, S. Che, G. Cao, F. Ouyang, Renew. Energy 113, 1503–1514 (2017)Google Scholar
  118. 118.
    X. Li, T. Zhang, S. Gu, S.-Z. Kang, G. Li, J. Mu, Sep. Purif. Technol. 108, 139–142 (2013)Google Scholar
  119. 119.
    X. Shi, Y. Cheng, N.M. Pugno, H. Gao, Appl. Phys. Lett. 96, 053115 (2010)Google Scholar
  120. 120.
    X. Li, Q. Xue, X. Chang, L. Zhu, H. Zheng, J. Co2 Util. 21, 429–435 (2017)Google Scholar
  121. 121.
    X. Li, Y. Jin, Q. Xue, L. Zhu, W. Xing, H. Zheng, Z. Liu, J. Co2 Util. 18, 275–282 (2017)Google Scholar
  122. 122.
    K. Yao, M. Manjare, C.A. Barrett, B. Yang, T.T. Salguero, Y. Zhao, J. Phys. Chem. Lett. 3, 2204–2208 (2012)Google Scholar
  123. 123.
    X. Shi, Y. Cheng, N.M. Pugno, H. Gao, Small 6, 739–744 (2010)Google Scholar
  124. 124.
    Z. Liu, J. Gao, G. Zhang, Y. Cheng, Y.W. Zhang, Nanotechnology 28, 385704 (2017)Google Scholar
  125. 125.
    Y. Wang, Y. Zhang, in IEEE 65th Electronic Components and Technology Conference (2015), pp. 1234–1239Google Scholar
  126. 126.
    H. Tarabkova, Z. Zelinger, P. Janda, Phys. Chem. Chem. Phys. 20, 5900–5908 (2018)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chongqing Key Laboratory of Micro/Nano Materials Engineering and TechnologyChongqing University of Arts and SciencesChongqingPeople’s Republic of China
  2. 2.College of Life ScienceChongqing Normal UniversityChongqingPeople’s Republic of China
  3. 3.Faculty of Materials and EnergySouthwest UniversityChongqingPeople’s Republic of China

Personalised recommendations