Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19425–19434 | Cite as

Electrical relaxation dynamics in EVA/BaFe12O19 copolymer composites

  • Deeptimayee Khatua
  • R. N. P. Choudhary
  • P. Ganga Raju Achary
Article
  • 15 Downloads

Abstract

Organic inorganic polymer systems were synthesized using ethylene–vinyl acetate copolymer (EVA) as polymer matrix and barium hexa-ferrite (BFO: BaFe12O19) as the inorganic phase by adopting solution casting procedure to ensure better dispersion. The BFO ferrite was first synthesized by the popular sol–gel combustion technique via urea root with ethylene glycol as gelation agent. Rietvelt analysis is performed for the phase quantification, structure refinement of BFO with the XRD diffraction patterns. Once the structure of the BFO is confirmed 0 wt%, 2.5 wt%, 5 wt% and 10 wt% of EVA/BFO polymer inorganic systems were synthesized for the dielectric and electrical investigation in the frequency range 100 Hz–1 MHz. A detailed analysis of the dielectric behavior of the above composites such as dielectric permittivity, dielectric loss tangent (tan δ), dielectric modulus spectra, impedance spectra and electrical conductivity is being reported in this communication. The 5 wt% of BFO in EVA/BFO polymer composite displayed interesting properties than the other wt% composites namely it has high dielectric constant and it showed the relaxation phenomenon in the temperature range of 70–85 °C. The capacitance and resistance values were derived from the simulation of the Nyquist plots with the help of an electrical circuit.

Notes

Acknowledgements

The work carried out in the present research paper is funded fully by the UGC-DAE Consortium for Scientific Research, Mumbai Centre, (CRS-M-297). The authors also would like to extend their sincere thanks to Dr. P. D. Babu of UGC-CSR-DAE for his kind support and to be the principal collaborator in the present project.

References

  1. 1.
    I. Shown, H.C. Hsu, Y.C. Chang, C.H. Lin, P.K. Roy, A. Ganguly, C.H. Wang, J.K. Chang, C.I. Wu, L.C. Chen, K.H. Chen. Nano Lett. 14, 6097 (2014)CrossRefGoogle Scholar
  2. 2.
    P. Simon, Y. Gogotsi, Nat. Mater. 7, 845 (2008)CrossRefGoogle Scholar
  3. 3.
    C. Meng, C. Liu, L. Chen, C. Hu, S. Fan, Nano Lett. 10, 4025 (2010)CrossRefGoogle Scholar
  4. 4.
    P.S. Khobragade, D.P. Hansora, J.B. Naik, J. Njuguna, S. Mishra, Polym. Composite (2017)Google Scholar
  5. 5.
    G.A. Snook, P. Kao, A.S. Best, J. Power Sources 196, 1 (2011)CrossRefGoogle Scholar
  6. 6.
    H. Valentová, M. Ilčíková, K. Czaniková, Z. Špitalský, M. Šlouf, J. Nedbal, M.Omastová, J. Macromol. Sci. B 53, 496 (2014)CrossRefGoogle Scholar
  7. 7.
    H. Di, C. Deng, R. Li, L. Dong, Y. Wang, RSC Adv. 5, 51248 (2015)CrossRefGoogle Scholar
  8. 8.
    W. Zhong, W. Ding, Y. Jiang, N. Zhang, J. Zhang, Y. Du, J. Am. Ceram. Soc. 62, 3258 (1997)Google Scholar
  9. 9.
    S. Singhal, K. Kaur, S. Jauhar, S. Bhukal, S. Bansal, World J. Condens. Matter Phys. 1, 101 (2011)CrossRefGoogle Scholar
  10. 10.
    B.K. Dash, P.G.R. Achary, N.C. Nayak, R.N.P. Choudhary, J. Electron. Mater. 46, 563 (2017)CrossRefGoogle Scholar
  11. 11.
    M. Soheilmoghaddam, H. Adelnia, H.C. Bidsorkhi, G. Sharifzadeh, M.U. Wahit, N.I. Akos, A.A. Yussuf, Macromol. Mater. Eng. 302, 1 (2017)CrossRefGoogle Scholar
  12. 12.
    S. Padhi, P.G.R. Achary, N.C. Nayak, J. Polym. Eng. 24, 184 (2017)Google Scholar
  13. 13.
    S. Hui, T.K. Chaki, S. Chattopadhyay, Polym. Eng. Sci. 50, 730 (2010)CrossRefGoogle Scholar
  14. 14.
    B.K. Dash, P.G.R. Achary, N. Nayak, J. Mater. Sci. Mater. Electron. 26, 7244 (2015)CrossRefGoogle Scholar
  15. 15.
    G. Psarras, E. Manolakaki, G. Tsangaris, Compos. A 33, 375 (2002)CrossRefGoogle Scholar
  16. 16.
    G.M. Tsangaris, G.C. Psarras, G.M. Tsangaris, J. Mater. Sci. 33, 2027 (1998)CrossRefGoogle Scholar
  17. 17.
    G.A. Kontos, A.L. Soulintzis, P.K. Karahaliou, G.C. Psarras, C. Georga, S.N. Krontiras, Express Polym. Lett. 1, 781 (2007)CrossRefGoogle Scholar
  18. 18.
    G.C. Psarras, E. Manolakaki, G.M. Tsangaris, Compos. A 34, 1187 (2003)CrossRefGoogle Scholar
  19. 19.
    G.M. Tsangaris, G.C. Psarras, J. Mater. Sci. 34, 2151 (1999)CrossRefGoogle Scholar
  20. 20.
    Z. Dang, J. Yuan, J. Zha, T. Zhou, Prog. Mater Sci. 57, 660 (2012)CrossRefGoogle Scholar
  21. 21.
    S. Yu, P. Hing, X. Hu, J. Appl. Phys. 88, 398 (2000)CrossRefGoogle Scholar
  22. 22.
    Q. Li, Q.Z. Xue, X.L. Gao, Q.B. Zheng, Express Polym. Lett. 3, 769 (2009)CrossRefGoogle Scholar
  23. 23.
    P. Anithakumari, B.P. Mandal, E. Abdelhamid, R. Naik, A.K. Tyagi, RSC Adv. 6, 16073 (2016)CrossRefGoogle Scholar
  24. 24.
    S. Das, P.G.R. Achary, N.C. Nayak, R.N.P. Choudhary, Polym. Composite 37, 3398 (2014)CrossRefGoogle Scholar
  25. 25.
    S. Sahoo, P.K. Mahapatra, R.N.P. Choudhary, J. Phys. D 49, 35302 (2016)CrossRefGoogle Scholar
  26. 26.
    R.K. Mishra, D.K. Pradhan, R.N.P. Choudhary, A. Banerjee, J. Phys. Condens. Matter 20, 45218 (2008)CrossRefGoogle Scholar
  27. 27.
    M. Ram, J. Alloys Compd. 509, 1744 (2011)CrossRefGoogle Scholar
  28. 28.
    J. Ross Macdonald, Solid State Ion. 13, 147 (1984)CrossRefGoogle Scholar
  29. 29.
    M. Mastragostino, C. Arbizzani, F. Soavi, 98, 812 (2001)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistrySiksha ‘O’ Anusandhan, Deemed to be UniversityBhubaneswarIndia
  2. 2.Department of PhysicsSiksha O Anusandhan, Deemed to be UniversityBhubaneswarIndia

Personalised recommendations