Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19413–19424 | Cite as

Development of tungsten disulfide ZnO nanohybrid photocatalyst for organic pollutants removal

  • Arulappan Durairaj
  • Daniel Lydia Jennifer
  • Thangavel Sakthivel
  • Asir Obadiah
  • Samuel VasanthkumarEmail author


In this study, ZnO and ZnO/WS2 nanohybrid were synthesized by a facile microwave approach. Nanohybrid phase purity and structural features were examined through XRD, SEM–EDS, and EDS color mapping techniques. The optical absorbance and band gap energy of the ZnO/WS2 nanohybrid was measured by the UV–DRS. Functional group features on the ZnO/WS2 nanohybrid was investigated by the FT-IR spectroscopy. Further, the position of the conduction band and conductivity of the prepared ZnO/WS2 nanohybrid was studied by the Mott–Schottky and Nyquist plot techniques. The photocatalytic properties of the ZnO/WS2 nanohybrid were evaluated through the degradation of anionic and cationic organic pollutants such as methylene blue, bromophenol-B and 4-nitrophenol respectively. The organic pollutants degradation efficiency was determined by the UV absorbance spectroscopy and HPLC. Pseudo first order rate constant of the degradation reaction was calculated by the Langmuir–Hazelwood kinetic model. In addition, probe molecule mineralization was evaluated by TOC analysis. The ZnO/WS2 nanohybrid catalysts durability was analyzed by subjecting it to four repeated photocatalytic cycles. After the photocatalysis reaction the catalyst structure distortion was analyzed by the XRD technique.



The authors are grateful to the Management and the Authorities of Karunya Institute of technology and science, Coimbatore, for their valuable support and constant encouragement. The authors are grateful to the Department of Science and Technology, Govt of India for their financial support.


  1. 1.
    G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R.C. Fitzmorris, C. Wang, J.Z. Zhang, Y. Li, Nano Lett. 11, 3026 (2011)CrossRefGoogle Scholar
  2. 2.
    M.M. Khan, S.F. Adil, A. Al-Mayouf, J. Saudi Chem. Soc. 19, 462 (2015)CrossRefGoogle Scholar
  3. 3.
    P.V. Kamat, J. Phys. Chem. Lett. 1, 520 (2010)CrossRefGoogle Scholar
  4. 4.
    X. Hu, G. Li, J.C. Yu, Langmuir 26, 3031 (2010)CrossRefGoogle Scholar
  5. 5.
    H.L. Tan, A. Du, R. Amal, Y.H. Ng, Chem. Eng. Sci. (2017). CrossRefGoogle Scholar
  6. 6.
    N. Raghavan, S. Thangavel, G. Venugopal, Mater. Sci. Semicond. Process. 30, 321 (2015)CrossRefGoogle Scholar
  7. 7.
    D. Zhao, G. Sheng, C. Chen, X. Wang, Appl. Catal. B 111–112, 303 (2012)CrossRefGoogle Scholar
  8. 8.
    S. Thangavel, S. Thangavel, N. Raghavan, R. Alagu, G. Venugopal, J. Phys. Chem. Solids 110, 266 (2017)CrossRefGoogle Scholar
  9. 9.
    A. Durairaj, T. Sakthivel, A. Obadiah, S. Vasanthkumar, J. Mater. Sci. Mater. Electron. 29, 8201 (2018)CrossRefGoogle Scholar
  10. 10.
    X. Huang, Z. Zeng, H. Zhang, Chem. Soc. Rev. 42, 1934 (2013)CrossRefGoogle Scholar
  11. 11.
    W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande, Y.H. Lee, Mater. Today 20, 116 (2017)CrossRefGoogle Scholar
  12. 12.
    B. Ji, J. Zhang, C. Zhang, N. Li, T. Zhao, F. Chen, L. Hu, S. Zhang, Z. Wang, ACS Appl. Nano Mater. 1, 793 (2018)CrossRefGoogle Scholar
  13. 13.
    B. Mahler, V. Hoepfner, K. Liao, G.A. Ozin, ‎J. Am. Chem. Soc. 136, 14121 (2014)CrossRefGoogle Scholar
  14. 14.
    L. Zheng, W. Zhang, X. Xiao, Korean J. Chem. Eng. 33, 107 (2016)CrossRefGoogle Scholar
  15. 15.
    K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Water Res. 88, 428 (2016)CrossRefGoogle Scholar
  16. 16.
    C. Feng, Z. Chen, W. Li, J. Zhou, Y. Sui, L. Xu, M. Sun, J. Mater. Sci. Mater. Electron. 29, 9301 (2018)CrossRefGoogle Scholar
  17. 17.
    S.-M. Lam, J.-C. Sin, A.Z. Abdullah, A.R. Mohamed, Desalin. Water Treat. 41, 131 (2012)CrossRefGoogle Scholar
  18. 18.
    F. Wang, W. Li, S. Gu, H. Li, X. Liu, M. Wang, ACS Sustain. Chem. Eng. 4, 6288 (2016)CrossRefGoogle Scholar
  19. 19.
    S. Thangavel, K. Krishnamoorthy, V. Krishnaswamy, N. Raju, S.J. Kim, G. Venugopal, J. Phys. Chem. C 119, 22057 (2015)CrossRefGoogle Scholar
  20. 20.
    G.P. Awasthi, S.P. Adhikari, S. Ko, H.J. Kim, C.H. Park, C.S. Kim, J. Alloys Compd. 682, 208 (2016)CrossRefGoogle Scholar
  21. 21.
    F. Guo, W. Shi, W. Guan, H. Huang, Y. Liu, Sep. Sci. Technol. 173, 295 (2017)Google Scholar
  22. 22.
    J. Wang, L. Tang, G. Zeng, Y. Liu, Y. Zhou, Y. Deng, J. Wang, B. Peng, ACS Sustain. Chem. Eng. 5, 1062 (2017)CrossRefGoogle Scholar
  23. 23.
    Y. Xu, J. Jin, X. Li, Y. Han, H. Meng, T. Wang, X. Zhang, Mater. Res. Bull. 76, 235 (2016)CrossRefGoogle Scholar
  24. 24.
    B. Mahler, V. Hoepfner, K. Liao, G.A. Ozin, J. Am. Chem. Soc. 136, 14121 (2014)CrossRefGoogle Scholar
  25. 25.
    M. Zare, K. Namratha, K. Byrappa, D.M. Surendra, S. Yallappa, B. Hungund, J. Mater. Sci. Technol. 34, 1035 (2018)CrossRefGoogle Scholar
  26. 26.
    X. Zhang, F. Qiu, X. Rong, J. Xu, J. Rong, T. Zhang, Can. J. Chem. Eng. 96, 1053 (2018)CrossRefGoogle Scholar
  27. 27.
    H. Mou, C. Song, Y. Zhou, B. Zhang, D. Wang, Appl. Catal. B 221, 565 (2018)CrossRefGoogle Scholar
  28. 28.
    C.-J. Chang, K.-L. Huang, J.-K. Chen, K.-W. Chu, M.-H. Hsu, J. Taiwan Inst. Chem. Eng. 55, 82 (2015)CrossRefGoogle Scholar
  29. 29.
    H. Khan, A.K. Khalil, A. Khan, K. Saeed, N. Ali, Korean J. Chem. Eng. 33, 2802 (2016)CrossRefGoogle Scholar
  30. 30.
    Q. He, Y. Ni, S. Ye, RSC Adv. 7, 27089 (2017)CrossRefGoogle Scholar
  31. 31.
    C. Xia, Z. Qiao, C. Feng, J.-S. Kim, B. Wang, B. Zhu, Materials 11, 40 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departmentof ChemistryKarunya Institute of Technology and SciencesCoimbatoreIndia
  2. 2.Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, College of Physics and OptoelectronicsTaiyuan University of TechnologyTaiyuanPeople’s Republic of China

Personalised recommendations