Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19402–19412 | Cite as

Rapid and efficient synthesis of reduced graphene oxide nano-sheets using CO ambient atmosphere as a reducing agent

  • Ahmad GholizadehEmail author
  • Azim Malekzadeh
  • Faiz Pourarian


Graphene oxide (GO) and reduced graphene oxide (RGO) nanostructures were synthesized using a novel method of CO gas flow under ambient pressure and at several temperatures. The produced samples of GO and RGO were structurally, chemically and optically characterized and the results were analyzed using the techniques of UV–Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction, field-effect scanning electron microscopy (FE-SEM), and sheet resistance measurements. Thermo-gravimetric analysis, and FTIR indicated the successful preparation of GO and RGO. FE-SEM was used to demonstrate the layer structure of GO and RGO nanostructures. The band gap energy (Eg) of the samples was estimated through the optical absorption spectra of GO and RGOs recorded between 200 and 1100 nm wavelengths using UV–Vis spectroscopy. The results are in good agreement with the data determined by other workers. Sheet resistance of RGO shows a decreasing trend versus annealing reduced temperature. This behavior is in accordance with variation of c-axis parameter with temperature which can be suggested to be due to the removal of water molecules and oxygen-containing functional groups between the carbon layers of the GO. Removing of the latter components may results in decreasing the distance between the graphene nano-layers.



The financial support of the Iran National Science Foundation (INSF) under Grant Number 95806516 is acknowledged.


  1. 1.
    S. Pei, H.-M. Cheng, Carbon 50, 3210 (2012)CrossRefGoogle Scholar
  2. 2.
    B.P. Vinayan, R. Nagar, V. Raman, N. Rajalakshmi, K.S. Dhathathreyan, S. Ramaprabhu, J. Mater. Chem. 22, 9949 (2012)CrossRefGoogle Scholar
  3. 3.
    Z.-S. Wu, W. Ren, L. Gao, B. Liu, C. Jiang, H.-M. Cheng, Carbon 47, 493 (2009)CrossRefGoogle Scholar
  4. 4.
    H.C. Schniepp, J.-L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud’homme, R. Car, D.A. Saville, I.A. Aksay, J. Phys. Chem. B 110, 8535 (2006)CrossRefGoogle Scholar
  5. 5.
    M.J. McAllister, J.-L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M. Herrera-Alonso, D.L. Milius, R. Car, R.K. Prud’homme, I.A. Aksay, Chem. Mater. 19, 4396 (2007)CrossRefGoogle Scholar
  6. 6.
    Z.-S. Wu, W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, Ch Jiang, H.-M. Cheng, ACS Nano 3, 411 (2009)CrossRefGoogle Scholar
  7. 7.
    Y. Zhu, S. Murali, M.D. Stoller, A. Velamakanni, R.D. Piner, R.S. Ruoff, Carbon 48, 2118 (2010)CrossRefGoogle Scholar
  8. 8.
    H.M.A. Hassan, V. Abdelsayed, A.E.R.S. Khder, K.M. AbouZeid, J. Terner, M.S. El-Shall, I. Al-Resayes, A. Saud, El-Azhary, Adel, J. Mater. Chem. 19, 3832 (2009)CrossRefGoogle Scholar
  9. 9.
    L.J. Cote, R. Cruz-Silva, J. Huang, J. Am. Chem. Soc. 131, 11027 (2009)CrossRefGoogle Scholar
  10. 10.
    Y. Zhang, L. Guo, S. Wei, Y. He, H. Xia, Q. Chen, H.-B. Sun, F.-Sh. Xiao, Nanotoday 5, 15 (2010)CrossRefGoogle Scholar
  11. 11.
    H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, ACS Nano 2, 463 (2008)CrossRefGoogle Scholar
  12. 12.
    X. Wang, L. Zhi, K. Mullen, Nano Lett. 8, 323 (2008)CrossRefGoogle Scholar
  13. 13.
    X. Li, H. Wang, J.T. Robinson, H. Sanchez, G. Diankov, H. Dai, J. Am. Chem. Soc. 131, 15939 (2009)CrossRefGoogle Scholar
  14. 14.
    M.J. Fernandez-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, J.M.D. Tascón, J. Phys. Chem. C 114, 6426 (2010)CrossRefGoogle Scholar
  15. 15.
    H.-J. Shin, K.K. Kim, A. Benayad, S.-M. Yoon, H.K. Park, I.-S. Jung, M.H. Jin, H.-K. Jeong, J.M. Kim, J.-Y. Choi, Y.H. Lee, Adv. Funct. Mater. 19, 1987 (2009)CrossRefGoogle Scholar
  16. 16.
    S. Pei, J. Zhao, J. Du, W. Ren, H.-M. Cheng, Carbon 48, 4466 (2010)CrossRefGoogle Scholar
  17. 17.
    K. Moon, J. Lee, R.S. Ruoff, H. Lee, Nat. Commun. 1, 73 (2010)CrossRefGoogle Scholar
  18. 18.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen, R.S. Ruoff, Carbon 45, 1558 (2007)CrossRefGoogle Scholar
  19. 19.
    M. Zhou, Y. Wang, Y. Zhai, J. Zhai, W. Ren, F. Wang, Sh. Dong, Chem. Eur. J. 15, 6116 (2009)CrossRefGoogle Scholar
  20. 20.
    H. Wang, J.T. Robinson, X. Li, H. Dai, J. Am. Chem. Soc. 131, 9910 (2009)CrossRefGoogle Scholar
  21. 21.
    W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, Nat. Chem. 1, 403 (2009)CrossRefGoogle Scholar
  22. 22.
    D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Zh Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 4, 4806 (2010)CrossRefGoogle Scholar
  23. 23.
    A. Gholizadeh, N. Tajabor, Mater. Sci. Semicond. Process. 13, 162 (2010)CrossRefGoogle Scholar
  24. 24.
    Sudesh, N. Kumar, S. Das, C. Bernhard, G.D. Varma, Supercond. Sci. Technol. 26, 095008 (2013)CrossRefGoogle Scholar
  25. 25.
    C. Nethravathi, T. Nisha, N. Ravishankar, C. Shivakumara, M. Rajamathi, G.-J. Zhang, Y. Song, Chun-Y. Hu, J.-H. Li, Carbon 47, 2054 (2009)CrossRefGoogle Scholar
  26. 26.
    X.J. Lv, W.F. Chang, H.X. Fu, H. Zhang, J.S. Cheng, G.L. Zhang, J. Mater. Chem. 22, 1539 (2012)CrossRefGoogle Scholar
  27. 27.
    K.-Y. Lian, Y.-F. Ji, X.-F. Li, M.-X. Jin, D.-J. Ding, Y. Luo, J. Phys. Chem. C 117, 6049 (2013)CrossRefGoogle Scholar
  28. 28.
    H. Huang, Zh Li, J. She, W. Wang, J. Appl. Phys. 111, 054317 (2012)CrossRefGoogle Scholar
  29. 29.
    S. Sarkar, A. Mondal, K. Dey, R. Ray, Mater. Res. Bull. 74, 465 (2016)CrossRefGoogle Scholar
  30. 30.
    A. Jilani, M.H.D. Othman, M.O. Ansari, R. Kumar, A. Alshahrie, A.F. Ismail, I.U. Khan, V.K. Sajith, M.A. Barakateg, New J. Chem. 41, 14217 (2017)CrossRefGoogle Scholar
  31. 31.
    R.C. Pawar, C.S. Lee, Mater. Chem. Phys. 141, 686 (2013)CrossRefGoogle Scholar
  32. 32.
    Y. Wang, J. Liu, L. Liu, D.D. Sun, Nanoscale Res. Lett. 6, 241 (2011)CrossRefGoogle Scholar
  33. 33.
    P.K. Sahoo, B. Panigrahy, D. Li, D. Bahadur, J. Appl. Phys. 113, 17B525 (2013)CrossRefGoogle Scholar
  34. 34.
    B.A. Chambers, M. Notarianni, J. Liu, N. Motta, G.G. Andersson, Appl. Surf. Sci. 356, 719 (2015)CrossRefGoogle Scholar
  35. 35.
    M.I.A. Umar, Ch.Ch Yap, R. Awang, A.A. Umar, M.M. Salleh, M. Yahay, Mater. Lett. 106, 200 (2013)CrossRefGoogle Scholar
  36. 36.
    M. Zhu, X. Li, Y. Guo, X. Li, P. Sun, X. Zang, K. Wang, M. Zhong, D. Wud, H. Zhu, Nanoscale 6, 4909 (2014)CrossRefGoogle Scholar
  37. 37.
    S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng et al., Nat. Nanotechnol. 5, 574 (2010)CrossRefGoogle Scholar
  38. 38.
    X. Wang, X. Wen, Zh Liu, Y. Tan, Y. Yuan, P. Zhang, Nanotechnology 23, 485604 (2012)CrossRefGoogle Scholar
  39. 39.
    Y.J. Oh, J.J. Yoo, Y.I. Kim, J.K. Yoon, H.N. Yoon, J.-H. Kim, S.B. Park, Electrochim. Acta 116, 118 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of PhysicsDamghan University (DU)DamghanIslamic Republic of Iran
  2. 2.School of ChemistryDamghan University (DU)DamghanIslamic Republic of Iran
  3. 3.Carnegie Mellon Research InstituteCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations