Capacitive humidity sensing using a metal–organic framework nanoporous thin film fabricated through electrochemical in situ growth

  • M. S. Hosseini
  • S. ZeinaliEmail author


The preparation of nanoporous thin film of metal–organic framework (MOF), Cu–BTC [1,3,5-benzenetricarboxylate or trimesate (BTC)], on the copper plate electrode as dielectric layer of the capacitive sensor was achieved by electrochemical in situ synthesis and film growth. An ionic liquid (IL), 1-methyl-3-octylimidazolium chloride as conducting salt, was used and aid synthesis in the electrochemical synthesis procedure. The structure and morphology of MOF film were properly characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction analysis and BET techniques. The fabricated sensor was used for the humidity measurement at ppm level using the parallel plates’ capacitive sensor structure. Capacitance variations in the presence of humidity at concentration range of 20–100 ppm was investigated using the fabricated sensor. The performances of the sensor have been examined by measuring the capacitance changes using a LCR meter [inductance (L), capacitance (C), and resistance (R)]. Variations of capacitance versus concentration were linear in the range of humidity concentrations which was used here. Sensitivity of the fabricated sensor was 1.13 pF/ppm. Limit of detection (LOD) of the fabricated sensor calculated as low as 5.45 ppm. n-Hexane and toluene vapors as nonpolar analytes were used to investigate the selectivity of the sensor.



We acknowledge the nanotechnology research Institute of Shiraz University and the ministry of science and technology as providers of financial sum, facilities, contributors, etc.


  1. 1.
    J. Boudaden, M. Steinmaßl, H. Endres, A. Drost, I. Eisele, C. Kutter, P. Muller, Polyimide-based capacitive humidity sensor. Sensors 1, 1516 (2018)Google Scholar
  2. 2.
    M. Pal, D. Saha, D.K. Ghara, Nanoporous ɣ-alumina based novel sensor to detect trace moisture in high temperature and high pressure environment. Sens. Actuators B 222, 1043–1049 (2016)Google Scholar
  3. 3.
    X.J. Li, L.L. Wang, H.Y. Wang, W.C. Wang, K. Li, X.C. Wang, Capacitive humidity sensing properties of ZnO cauliflowers grown on silicon nanoporous pillar array. Sens. Actuators B 177, 740–744 (2013)Google Scholar
  4. 4.
    Z. Chen, C. Lu, Humidity sensors: a review of materials and mechanisms. Sensor Lett. 3, 274–295 (2005)Google Scholar
  5. 5.
    F. Hossein-Babaei, P. Shabani, A gold/organic semiconductor diode for ppm-level humidity sensing. Sens. Actuators B 205, 143–150 (2014)Google Scholar
  6. 6.
    T. Islam, A.T. Nimal, U. Mittal, M.U. Sharma, A micro interdigitated thin film metal oxide capacitive sensor for measuring moisture in the range of 175–625 ppm. Sens. Actuators B 221, 357–364 (2015)Google Scholar
  7. 7.
    T. Islam, L. Kumar, S.A. Khan, A novel sol–gel thin film porous alumina based capacitive sensor for measuring trace moisture in the range of 2.5–25 ppm. Sens. Actuators B 173, 377–384 (2012)Google Scholar
  8. 8.
    D.T. Phan, I. Park, A.R. Park, C.M. Park, K.J. Jeon, Black P/graphene hybrid: a fast response humidity sensor with good reversibility and stability. Sci. Rep. (2017). Google Scholar
  9. 9.
    M.B. Erande, M. Pawar, D.J. Late, Humidity sensing and photodetection behavior of electrochemically exfoliated atomically thin-layered black phosphorus nanosheets. ACS Appl. Mater. Interfaces (2016). Google Scholar
  10. 10.
    S. Yao, Y. Zhu, Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 6, 2345–2352 (2014)Google Scholar
  11. 11.
    T. Mlsna, S. Dissanayake, C. Vanlangenberg, S.V. Patel, Conducting absorbent composite for parallel plate chemicapacitive microsensors with improved selectivity. Sens. Actuators B 206, 548–554 (2015)Google Scholar
  12. 12.
    H.M. Heitzer, T.J. Marks, M.A. Ratner, Computation of dielectric response in molecular solids for high capacitance organic dielectrics. Acc. Chem. Res. 49, 1614–1623 (2016)Google Scholar
  13. 13.
    Z. Ahmad, Q. Zafar, K. Sulaiman, R. Akram, S. Khasan, Karimov, A humidity sensing organic-inorganic composite for environmental monitoring. Sensors 13, 3615–3624 (2013)Google Scholar
  14. 14.
    L. Sun, Y. Liu, J. Zhang, F. Xu, T. Zhang, W. You, Y. Zhao, J. Zeng, Z. Cao, D. Yang, Lithium-based 3D coordination polymer with hydrophilic structure for sensing of solvent molecules. Cryst. Growth Des. 8, 3127–3129 (2008)Google Scholar
  15. 15.
    B. Bahreyni, A.H. Khoshaman, Application of metal organic framework crystals for sensing of volatile organic gases. Sens. Actuators B 162, 114–119 (2012)Google Scholar
  16. 16.
    M.D. Allendorf, V. Stavila, A.A. Talin, MOF-based electronic and optoelectronic devices. Chem. Soc. Rev. 43, 5994–6010 (2014)Google Scholar
  17. 17.
    M.D. Allendorf, T. By Scott, J.A. Meek, Greathouse, Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv. Mater. 23, 249–267 (2011)Google Scholar
  18. 18.
    D. Liu, W. Zhang, H. Huang, Q. Yang, Y. Xiao, Q. Ma, C. Zhong, A new metal–organic framework with high stability based on zirconium for sensing small molecules. Microporous Mesoporous Mater. 171, 118–124 (2013)Google Scholar
  19. 19.
    M. Allendorf, L.E. Kreno, K. Leong, O.K. Farha, R.P. Van Duyne, J.T. Hupp, Metal-organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012)Google Scholar
  20. 20.
    J.K. Fischer, P. Sippel, D. Denysenko, P. Lunkenheimer, D. Volkmer, A. Loidl, Metal-organic frameworks as host materials of confined supercooled liquids. J. Chem. Phys. 143(15), 154505 (2015)Google Scholar
  21. 21.
    M.G. Campbell, M. Dinca, Metal–organic frameworks as active materials in electronic sensor devices. Sensors 17, 1108 (2017)Google Scholar
  22. 22.
    S. Qiu, J. Liu, F. Sun, F. Zhang, Z. Wang, R. Zhang, C. Wang, In situ growth of continuous thin metal–organic framework film for capacitive humidity sensing. J. Mater. Chem. 21, 3775 (2011)Google Scholar
  23. 23.
    S. Qiu, G. Zhu, H. Guo, I.J. Hewitt, Twin copper source” growth of metal-organic framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2. J. Am. Chem. Soc. 131, 1646–1647 (2009)Google Scholar
  24. 24.
    R.A. Fischer, A. Betard, Metal–organic framework thin films: from fundamentals to applications. Chem. Rev. 112, 1055–1083 (2012)Google Scholar
  25. 25.
    R. Ameloot, L. Stappers, J. Fransaer, L. Alaerts, B.F. Sels, D.E. De Vos, Patterned growth of metal-organic framework coatings by electrochemical synthesis. Chem. Mater. 21, 2580–2582 (2009)Google Scholar
  26. 26.
    Z. Li, R. Li, J. Du, Y. Luan, Y. Xue, H. Zou, G. Zhuang, Ionic liquid precursor-based synthesis of CuO nanoplates for gas sensing and amperometric sensing applications. Sens. Actuators B 168, 156–164 (2012)Google Scholar
  27. 27.
    W.S. Ahn, S.H. Kim, S.T. Yang, J. Kim, Sonochemical synthesis of Cu3(BTC)2 in a deep eutectic mixture of choline chloride/dimethyl urea. Bull. Korean Chem. Soc. 32, 2783 (2011)Google Scholar
  28. 28.
    J. Dong, L. Liu, H. Wei, L. Zhang, J. Li, Ionothermal synthesis of the metal-organic framework compound Cu3(BTC)2. Stud. Surf. Sci. Catal. 174, 459–462 (2008)Google Scholar
  29. 29.
    J. Bowers, C.P. Butts, P.J. Martin, M.C. Vergara-Gutierrez, Aggregation behavior of aqueous solutions of ionic liquids. Langmuir 20, 2191–2198 (2004)Google Scholar
  30. 30.
    M.S. Hosseini, S. Zeinali, M.H. Sheikhi, Fabrication of capacitive sensor based on Cu-BTC (MOF-199) nanoporous film for detection of ethanol and methanol vapors. Sens. Actuators B 230, 9–16 (2016)Google Scholar
  31. 31.
    K.S. Rajan, L. Brinda, J. Bosco Balagura, Rayappan, Synthesis and characterization of MOF-199: a potential sensing material. J. Appl. Sci. 12, 1778–1780 (2012)Google Scholar
  32. 32.
    S. Loera-Serna, M.A. Oliver-Tolentino, M. de Lourdes Lopez-Nunez, A. Santana-Cruz, A. Guzman-Vargas, R. Cabrera-Sierra, H.I. Beltran, J. Flores, Electrochemical behavior of [Cu3(BTC)2] metal–organic framework: the effect of the method of synthesis. J. Alloys Compd. 540, 113–120 (2012)Google Scholar
  33. 33.
    MdaS. Pinto, C. Augusto Sierra-Avila, J.P. Hinestroza, In situ synthesis of a Cu-BTC metal-organic framework (MOF 199) onto cellulosic fibrous substrates: cotton. Cellulose 19, 1771–1779 (2012)Google Scholar
  34. 34.
    E. Zampetti, S. Pantalei, A. Pecora, A. Valletta, L. Maiolo, A. Minotti, A. Macagnano, G. Fortunato, A. Bearzotti, Design and optimization of an ultrathin flexible capacitive humidity sensor. Sens. Actuators B 4, 302–307 (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Nanochemical Engineering, Faculty of Advanced technologiesShiraz UniversityShirazIran

Personalised recommendations