Advertisement

Non-metal modified TiO2: a step towards visible light photocatalysis

  • Anuj Mittal
  • Bernabe Mari
  • Shankar Sharma
  • Vijaya Kumari
  • Sanjeev Maken
  • Kavitha Kumari
  • Naveen KumarEmail author
Review

Abstract

Advanced oxidation process (AOP) is a versatile photocatalytic approach to degrade various environmental pollutants. Among many photocatalysts used in AOP such as ZnO, TiO2, ZrO2, ZnS, CdS; TiO2 is the most widely adopted semiconductor material. TiO2 is a wide band gap material and absorb in UV spectrum which is a narrow region in the sun light. This benchmark makes it a less efficient photocatalyst under sunlight irradiation. To enhance the photocatalytic efficiency, the absorption band of photocatalyst should be modified in such a way that it leads to maximum absorption in the solar spectrum. The doping of nonmetals such as N, C, P and S etc. shift the band edge of the semiconductors towards the visible region and thus increases the photon absorption which successively enhances the photocatalytic efficiency. In this review, we have focused on effect of nonmetal doping on the properties and photocatalytic activity of the TiO2. Influence of various aspects such as synthesis procedure, doping source, concentration of dopant, calcination etc. are also explored towards alteration in properties and photocatalytic efficiency of nonmetals doped TiO2.

Notes

Acknowledgements

One of the authors, Anuj Mittal greatly recognize the financial aid in the form of SRF from CSIR, New Delhi, India (Award No.: 09/382(0177)/2016-EMR-1).

References

  1. 1.
    S.R. Batchu, V.R. Panditi, K.E. O’Shea, P.R. Gardinali, Sci. Total Environ. 470–471, 299 (2014)Google Scholar
  2. 2.
    P. Gao, J. Liu, T. Zhang, D.D. Sun, W. Ng, J. Hazard. Mater. 229–230, 209 (2012)Google Scholar
  3. 3.
    M. El Madani, M. Harir, A. Zrineh, M. El Azzouzi, Arab. J. Chem. 8, 181 (2015)Google Scholar
  4. 4.
    V. Guzsvány, J. Petrović, J. Krstić, Z. Papp, M. Putek, L. Bjelica, A. Bobrowski, B. Abramović, J. Electroanal. Chem. 699, 33 (2013)Google Scholar
  5. 5.
    K.A. Saharudin, S. Sreekantan, C.W. Lai, Mater. Sci. Semicond. Process. 20, 1 (2014)Google Scholar
  6. 6.
    X. Cheng, X. Yu, Z. Xing, Appl. Surf. Sci. 268, 204 (2013)Google Scholar
  7. 7.
    E.C. Ilinoiu, R. Pode, F. Manea, L.A. Colar, A. Jakab, C. Orha, C. Ratiu, C. Lazau, P. Sfarloaga, J. Taiwan Inst. Chem. Eng. 44, 270 (2013)Google Scholar
  8. 8.
    B. Aysin, A. Ozturk, J. Park, Ceram. Int. 39, 7119 (2013)Google Scholar
  9. 9.
    A. Kadam, R. Dhabbe, D.-S. Shin, K. Garadkar, J. Park, Ceram. Int. 43, 5164 (2017)Google Scholar
  10. 10.
    A. Barrera, F. Tzompantzi, V. Lara, R. Gómez, J. Photochem. Photobiol. A 227, 45 (2012)Google Scholar
  11. 11.
    X. Wu, S. Yin, Q. Dong, C. Guo, H. Li, T. Kimura, T. Sato, Appl. Catal. B 142–143, 450 (2013)Google Scholar
  12. 12.
    J. Yu, S. Wang, J. Low, W. Xiao, Phys. Chem. Chem. Phys. 15, 16883 (2013)Google Scholar
  13. 13.
    J. Liu, B. Cheng, J. Yu, Phys. Chem. Chem. Phys. 18, 31175 (2016)Google Scholar
  14. 14.
    W. Yu, D. Xu, T. Peng, J. Mater. Chem. A 3, 19936 (2015)Google Scholar
  15. 15.
    W.-K. Jo, T. Adinaveen, J.J. Vijaya, N.C. Sagaya Selvam, RSC Adv. 6, 10487 (2016)Google Scholar
  16. 16.
    J. Low, C. Jiang, B. Cheng, S. Wageh, A.A. Al-Ghamdi, J. Yu, Small Methods 1, 1700080 (2017)Google Scholar
  17. 17.
    X. Van Doorslaer, P.M. Heynderickx, K. Demeestere, K. Debevere, H. Van Langenhove, J. Dewulf, Appl. Catal. B 111–112, 150 (2012)Google Scholar
  18. 18.
    N. Verma, S. Yadav, B. Marí, A. Mittal, J. Jindal, Trans. Indian Ceram. Soc. 77, 1–7 (2018)Google Scholar
  19. 19.
    Y. Shao, C. Cao, S. Chen, M. He, J. Fang, J. Chen, X. Li, D. Li, Appl. Catal. B 179, 344 (2015)Google Scholar
  20. 20.
    J. Su, P. Geng, X. Li, Q. Zhao, X. Quan, G. Chen, Nanoscale 7, 16282 (2015)Google Scholar
  21. 21.
    J.J.C. Yu, W. Ho, J.J.C. Yu, H. Yip, P.K. Wong, J. Zhao, A. Tio, Environ. Sci. Technol. 39, 1175 (2005)Google Scholar
  22. 22.
    N. Kumar, N.S. Chauhan, A. Mittal, S. Sharma, Biometals 31, 147 (2018)Google Scholar
  23. 23.
    C. Sotelo-Vazquez, N. Noor, A. Kafizas, R. Quesada-Cabrera, D.O. Scanlon, A. Taylor, J.R. Durrant, I.P. Parkin, Chem. Mater. 27, 3234 (2015)Google Scholar
  24. 24.
    C. Dette, M.A. Pérez-Osorio, C.S. Kley, P. Punke, C.E. Patrick, P. Jacobson, F. Giustino, S.J. Jung, K. Kern, Nano Lett. 14, 6533 (2014)Google Scholar
  25. 25.
    D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, C.R.A. Catlow, M.J. Powell, R.G. Palgrave, I.P. Parkin, G.W. Watson, T.W. Keal, P. Sherwood, A. Walsh, A.A. Sokol, Nat. Mater. 12, 798 (2013)Google Scholar
  26. 26.
    A.E. Giannakas, M. Antonopoulou, C. Daikopoulos, Y. Deligiannakis, I. Konstantinou, Appl. Catal. B 184, 44 (2016)Google Scholar
  27. 27.
    S. Yu, H.J. Yun, Y.H. Kim, J. Yi, Appl. Catal. B 144, 893 (2014)Google Scholar
  28. 28.
    W.-K. Jo, Y. Won, I. Hwang, R.J. Tayade, Ind. Eng. Chem. Res. 53, 3455 (2014)Google Scholar
  29. 29.
    Q. Wang, S. Xu, F. Shen, Appl. Surf. Sci. 257, 7671 (2011)Google Scholar
  30. 30.
    M.A. Mohamed, W.N.W. Salleh, J. Jaafar, A.F. Ismail, M. Abd Mutalib, S.M. Jamil, Carbohydr. Polym. 133, 429 (2015)Google Scholar
  31. 31.
    C. McManamon, J. O’Connell, P. Delaney, S. Rasappa, J.D. Holmes, M.A. Morris, J. Mol. Catal. A 406, 51 (2015)Google Scholar
  32. 32.
    H. Sun, H. Liu, J. Ma, X. Wang, B. Wang, L. Han, J. Hazard. Mater. 156, 552 (2008)Google Scholar
  33. 33.
    A. Galenda, L. Crociani, N. El Habra, M. Favaro, M.M. Natile, G. Rossetto, Appl. Surf. Sci. 314, 919 (2014)Google Scholar
  34. 34.
    J. Saien, Z. Mesgari, J. Mol. Catal. A 414, 108 (2016)Google Scholar
  35. 35.
    K. Kondo, N. Murakami, C. Ye, T. Tsubota, T. Ohno, Appl. Catal. B 142–143, 362 (2013)Google Scholar
  36. 36.
    D. Ma, Y. Xin, M. Gao, J. Wu, Appl. Catal. B 147, 49 (2014)Google Scholar
  37. 37.
    S.-H.H. Nam, T.K. Kim, J.-H.H. Boo, Catal. Today 185, 259 (2012)Google Scholar
  38. 38.
    F. Song, Q. Zhong, Q. Chen, X. Rong, B. Wang, J. CO2 Util. 9, 23 (2015)Google Scholar
  39. 39.
    G. Wu, T. Nishikawa, B. Ohtani, A. Chen, Chem. Mater. 19, 4530 (2007)Google Scholar
  40. 40.
    J. Li, L. Yan, Y. Wang, Y. Kang, C. Wang, S. Yang, J. Mater. Sci. Mater. Electron. 27, 7834 (2016)Google Scholar
  41. 41.
    V. Amoli, S. Bhat, A. Maurya, B. Banerjee, A. Bhaumik, A.K. Sinha, ACS Appl. Mater. Interfaces 7, 26022 (2015)Google Scholar
  42. 42.
    X. Huang, L. Meng, M. Du, Y. Li, J. Mater. Sci. Mater. Electron. 27, 7222 (2016)Google Scholar
  43. 43.
    W. Zhou, G. Du, P. Hu, G. Li, D. Wang, H. Liu, J. Wang, R.I. Boughton, D. Liu, H. Jiang, J. Mater. Chem. 21, 7937 (2011)Google Scholar
  44. 44.
    Y. Li, J. Yuan, S. Gao, L. Li, S. Jiao, Y. Jin, H. Li, J. Wang, Q. Yu, Y. Zhang, J. Mater. Sci. Mater. Electron. 28, 468 (2017)Google Scholar
  45. 45.
    F. Guo, H. Bai, B. Zhang, X. Li, Q. Yang, L. Gai, R. Guo, Y. Huang, J. Mater. Sci. Mater. Electron. 29, 12169 (2018)Google Scholar
  46. 46.
    P.-C. Chen, M.-C. Tsai, M.-H. Yang, T.-T. Chen, H.-C. Chen, I.-C. Chang, Y.-C. Chang, Y.-L. Chen, I.-N. Lin, H.-T. Chiu, C.-Y. Lee, Appl. Catal. B 142–143, 752 (2013)Google Scholar
  47. 47.
    H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Nature 453, 638 (2008)Google Scholar
  48. 48.
    A. Selloni, Nat. Mater. 7, 613 (2008)Google Scholar
  49. 49.
    J. Tian, Z. Zhao, A. Kumar, R.I. Boughton, H. Liu, Chem. Soc. Rev. 43, 6920 (2014)Google Scholar
  50. 50.
    H. Zhao, Y. Dong, P. Jiang, G. Wang, J. Zhang, ACS Appl. Mater. Interfaces 7, 6451 (2015)Google Scholar
  51. 51.
    M.B. Suwarnkar, R.S. Dhabbe, A.N. Kadam, K.M. Garadkar, Ceram. Int. 40, 5489 (2014)Google Scholar
  52. 52.
    A.N. Kadam, R.S. Dhabbe, M.R. Kokate, Y.B. Gaikwad, K.M. Garadkar, Spectrochim. Acta A 133, 669 (2014)Google Scholar
  53. 53.
    S.D. Marathe, V.S. Shrivastava, Appl. Nanosci. 5, 229 (2015)Google Scholar
  54. 54.
    M.J. Mattle, K.R. Thampi, Appl. Catal. B 140–141, 348 (2013)Google Scholar
  55. 55.
    E.M. Rockafellow, L.K. Stewart, W.S. Jenks, Appl. Catal. B 91, 554 (2009)Google Scholar
  56. 56.
    K. Yang, Y. Dai, B. Huang, J. Phys. Chem. C 111, 18985 (2007)Google Scholar
  57. 57.
    C. Han, J. Andersen, V. Likodimos, P. Falaras, J. Linkugel, D.D. Dionysiou, Catal. Today 224, 132 (2014)Google Scholar
  58. 58.
    J. Zhang, L. Sun, J. Yin, H. Su, C. Liao, C. Yan, Chem. Mater. 14, 4172 (2002)Google Scholar
  59. 59.
    H. Chang, Water Res. 34, 407 (2000)Google Scholar
  60. 60.
    P.N. Gaikwad, P.P. Hankare, T.M. Wandre, K.M. Garadkar, R. Sasikala, Mater. Sci. Eng. B 205, 40 (2016)Google Scholar
  61. 61.
    Y. Yao, L. Guan, Y. Ma, M. Yao, J. Mater. Sci. Mater. Electron. 28, 3013 (2017)Google Scholar
  62. 62.
    M.-S. Kim, G. Liu, H.-K. Cho, B.-W. Kim, J. Hazard. Mater. 190, 537 (2011)Google Scholar
  63. 63.
    Y. Zhang, Z. Zhao, J. Chen, L. Cheng, J. Chang, W. Sheng, C. Hu, S. Cao, Appl. Catal. B 165, 715 (2015)Google Scholar
  64. 64.
    A. Cordero-García, J.L. Guzmán-Mar, L. Hinojosa-Reyes, E. Ruiz-Ruiz, A. Hernández-Ramírez, Ceram. Int. 42, 9796 (2016)Google Scholar
  65. 65.
    M. Cruz, C. Gomez, C.J. Duran-Valle, L.M. Pastrana-Martínez, J.L. Faria, A.M.T. Silva, M. Faraldos, A. Bahamonde, Appl. Surf. Sci. 416, 1013 (2017)Google Scholar
  66. 66.
    P. Shao, J. Tian, Z. Zhao, W. Shi, S. Gao, F. Cui, Appl. Surf. Sci. 324, 35 (2015)Google Scholar
  67. 67.
    Z. He, W. Que, J. Chen, Y. He, G. Wang, J. Phys. Chem. Solids 74, 924 (2013)Google Scholar
  68. 68.
    J.A. Sullivan, E.M. Neville, R. Herron, K.R. Thampi, J.M.D. Macelroy, J. Photochem. Photobiol. A 289, 60 (2014)Google Scholar
  69. 69.
    E.M. Neville, M.J. Mattle, D. Loughrey, B. Rajesh, M. Rahman, J.M.D. MacElroy, J.A. Sullivan, K.R. Thampi, J. Phys. Chem. C 116, 16511 (2012)Google Scholar
  70. 70.
    X.J. Ye, W. Zhong, M.H. Xu, X.S. Qi, C.T. Au, Y.W. Du, Phys. Lett. Sect. A 373, 3684 (2009)Google Scholar
  71. 71.
    S. Liu, L. Yang, S. Xu, S. Luo, Q. Cai, Electrochem. Commun. 11, 1748 (2009)Google Scholar
  72. 72.
    T. Ohno, T. Tsubota, M. Toyofuku, R. Inaba, Catal. Lett. 98, 255 (2004)Google Scholar
  73. 73.
    G. Li, L. Chen, N.M. Dimitrijevic, K.A. Gray, Chem. Phys. Lett. 451, 75 (2008)Google Scholar
  74. 74.
    Y. Liu, M. Xing, J. Zhang, Cuihua Xuebao/Chin. J. Catal. 35, 1511 (2014)Google Scholar
  75. 75.
    C. Di Valentin, G. Pacchioni, A. Selloni, Chem. Mater. 17, 6656 (2005)Google Scholar
  76. 76.
    M.D.G. de Luna, J.C. Te Lin, M.J.N. Gotostos, M.C. Lu, Sustain. Environ. Res. 26, 161 (2016)Google Scholar
  77. 77.
    Y. Huang, W. Ho, S. Lee, L. Zhang, G. Li, J.C. Yu, Langmuir 24, 3510 (2008)Google Scholar
  78. 78.
    A.M. Abdullah, N.J. Al-Thani, K. Tawbi, H. Al-Kandari, Arab. J. Chem. 9, 229 (2016)Google Scholar
  79. 79.
    E.C. Cho, J.H. Ciou, J.H. Zheng, J. Pan, Y.S. Hsiao, K.C. Lee, J.H. Huang, Appl. Surf. Sci. 355, 536 (2015)Google Scholar
  80. 80.
    J. Przepiórski, N. Yoshizawa, Y. Yamada, J. Mater. Sci. 36, 4249 (2001)Google Scholar
  81. 81.
    Y. Zhao, Y. Li, C.-W.W. Wang, J. Wang, X.-Q.Q. Wang, Z.-W.W. Pan, C. Dong, F. Zhou, Solid State Sci. 15, 53 (2013)Google Scholar
  82. 82.
    W. Zhou, F. Sun, K. Pan, G. Tian, B. Jiang, Z. Ren, C. Tian, H. Fu, Adv. Funct. Mater. 21, 1922 (2011)Google Scholar
  83. 83.
    Y.P. Yang, M.S. Wong, Surf. Coat. Technol. 259, 129 (2014)Google Scholar
  84. 84.
    R. Leary, A. Westwood, Carbon (New York) 49, 741 (2011)Google Scholar
  85. 85.
    N.C.T. Martins, J. Ângelo, A.V. Girão, T. Trindade, L. Andrade, A. Mendes, Appl. Catal. B 193, 67 (2016)Google Scholar
  86. 86.
    X. Zhang, J. Pan, C. Zhu, Y. Sheng, Z. Yan, Y. Wang, B. Feng, J. Mater. Sci. Mater. Electron. 26, 2861 (2015)Google Scholar
  87. 87.
    J. Pan, M. You, C. Chi, Z. Dong, B. Wang, M. Zhu, W. Zhao, C. Song, Y. Zheng, C. Li, Int. J. Hydrog. Energy 43, 6586 (2018)Google Scholar
  88. 88.
    M. Zhu, X. Deng, X. Lin, L. Zhang, W. Zhang, Y. Lv, J. Pan, J. Mater. Sci. Mater. Electron. 29, 11449 (2018)Google Scholar
  89. 89.
    C.G. Silva, J.L. Faria, Appl. Catal. B 101, 81 (2010)Google Scholar
  90. 90.
    V.M. Zaĭnullina, V.P. Zhukov, V.N. Krasil’nikov, M.Y. Yanchenko, L.Y. Buldakova, E.V. Polyakov, Phys. Solid State 52, 271 (2010)Google Scholar
  91. 91.
    V.N. Kuznetsov, N. Serpone, J. Phys. Chem. B 110, 25203 (2006)Google Scholar
  92. 92.
    N. Serpone, J. Phys. Chem. B 110, 24287 (2006)Google Scholar
  93. 93.
    C. Xu, R. Killmeyer, M.L. Gray, S.U.M. Khan, Appl. Catal. B 64, 312 (2006)Google Scholar
  94. 94.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)Google Scholar
  95. 95.
    P. Periyat, K.V. Baiju, P. Mukundan, P.K. Pillai, K.G.K. Warrier, Appl. Catal. A 349, 13 (2008)Google Scholar
  96. 96.
    H. Slimen, H. Lachheb, S. Qourzal, A. Assabbane, A. Houas, J. Environ. Chem. Eng. 3, 922 (2015)Google Scholar
  97. 97.
    C. Xie, S. Yang, B. Li, H. Wang, J.-W. Shi, G. Li, C. Niu, J. Colloid Interface Sci. 476, 1 (2016)Google Scholar
  98. 98.
    K. Rajendran, V. Senthil Kumar, K. Anitha Rani, Optik (Stuttg). 125, 1993 (2014)Google Scholar
  99. 99.
    L. Jiang, Y. Huang, T. Liu, J. Colloid Interface Sci. 439, 62 (2015)Google Scholar
  100. 100.
    X. Qiu, C. Burda, Chem. Phys. 339, 1 (2007)Google Scholar
  101. 101.
    W. Zhang, L. Zou, R. Lewis, D. Dionysio, J. Mater. Sci. Chem. Eng. 2, 28 (2014)Google Scholar
  102. 102.
    R. Asahi, T. Morikawa, H. Irie, T. Ohwaki, Chem. Rev. 114, 9824 (2014)Google Scholar
  103. 103.
    C.W. Dunnill, I.P. Parkin, Dalton Trans. 40, 1635 (2011)Google Scholar
  104. 104.
    S. Sato, Chem. Phys. Lett. 123, 126 (1986)Google Scholar
  105. 105.
    F. Peng, L. Cai, H. Yu, H. Wang, J. Yang, J. Solid State Chem. 181, 130 (2008)Google Scholar
  106. 106.
    X. Zhou, F. Peng, H. Wang, H. Yu, J. Yang, J. Solid State Chem. 184, 134 (2011)Google Scholar
  107. 107.
    Z. Xiong, X.S. Zhao, J. Am. Chem. Soc. 134, 5754 (2012)Google Scholar
  108. 108.
    Z. Zhang, Z. Huang, X. Cheng, Q. Wang, Y. Chen, P. Dong, X. Zhang, Appl. Surf. Sci. 355, 45 (2015)Google Scholar
  109. 109.
    Y. Ao, J. Xu, S. Zhang, D. Fu, Appl. Surf. Sci. 256, 2754 (2010)Google Scholar
  110. 110.
    V. Gombac, L. De Rogatis, A. Gasparotto, G. Vicario, T. Montini, D. Barreca, G. Balducci, P. Fornasiero, E. Tondello, M. Graziani, Chem. Phys. 339, 111 (2007)Google Scholar
  111. 111.
    L. Zeng, Z. Lu, M. Li, J. Yang, W. Song, D. Zeng, C. Xie, Appl. Catal. B 183, 308 (2016)Google Scholar
  112. 112.
    X. Li, P. Liu, Y. Mao, M. Xing, J. Zhang, Appl. Catal. B 164, 352 (2015)Google Scholar
  113. 113.
    V. Vaiano, O. Sacco, D. Sannino, P. Ciambelli, Appl. Catal. B 170–171, 153 (2015)Google Scholar
  114. 114.
    N.R. Khalid, E. Ahmed, Z. Hong, Y. Zhang, M. Ahmad, Curr. Appl. Phys. 12, 1485 (2012)Google Scholar
  115. 115.
    X. Chen, D.H. Kuo, D. Lu, Chem. Eng. J. 295, 192 (2016)Google Scholar
  116. 116.
    C.B. Xiaobo Chen, Am. Chem. Soc. 130, 5018 (2008)Google Scholar
  117. 117.
    C. Di Valentin, E. Finazzi, G. Pacchioni, A. Selloni, S. Livraghi, M.C. Paganini, E. Giamello, Chem. Phys. 339, 44 (2007)Google Scholar
  118. 118.
    G. Barolo, S. Livraghi, M. Chiesa, M.C. Paganini, E. Giamello, J. Phys. Chem. C 116, 20887 (2012)Google Scholar
  119. 119.
    T.A. Kandiel, A. Feldhoff, L. Robben, R. Dillert, D.W. Bahnemann, Chem. Mater. 22, 2050 (2010)Google Scholar
  120. 120.
    J. Pan, S.P. Jiang, J. Colloid Interface Sci. 469, 25 (2016)Google Scholar
  121. 121.
    F. He, F. Ma, T. Li, G. Li, Chin. J. Catal. 34, 2263 (2013)Google Scholar
  122. 122.
    S. Yin, Y. Aita, M. Komatsu, T. Sato, J. Eur. Ceram. Soc. 26, 2735 (2006)Google Scholar
  123. 123.
    S. Larumbe, M. Monge, C. Gómez-Polo, Appl. Surf. Sci. 327, 490 (2015)Google Scholar
  124. 124.
    Y. Cong, J. Zhang, F. Chen, M. Anpo, D. He, J. Phys. Chem. C 111, 10618 (2007)Google Scholar
  125. 125.
    Y.F. Zhao, C. Li, S. Lu, R.X. Liu, J.Y. Hu, Y.Y. Gong, L.Y. Niu, J. Solid State Chem. 235, 160 (2016)Google Scholar
  126. 126.
    G. Liu, Y. Zhao, C. Sun, F. Li, G.Q. Lu, H. Cheng, Angew. Chem. Int. Ed. 47, 5277 (2008)Google Scholar
  127. 127.
    L. Lin, R.Y. Zheng, J.L. Xie, Y.X. Zhu, Y.C. Xie, Appl. Catal. B 76, 196 (2007)Google Scholar
  128. 128.
    Y. Wu, H. Liu, J. Zhang, F. Chen, J. Phys. Chem. C 113, 14689 (2009)Google Scholar
  129. 129.
    Y. Yu, Y. Tang, J. Yuan, Q. Wu, W. Zheng, Y. Cao, J. Phys. Chem. C 118, 13545 (2014)Google Scholar
  130. 130.
    X. Wang, W. Yang, F. Li, Y. Xue, R. Liu, Y. Hao, Ind. Eng. Chem. Res. 52, 17140 (2013)Google Scholar
  131. 131.
    M.S. Akple, J. Low, Z. Qin, S. Wageh, A.A. Al-Ghamdi, J. Yu, S. Liu, Chin. J. Catal. 36, 2127 (2015)Google Scholar
  132. 132.
    V. Vaiano, O. Sacco, G. Iervolino, D. Sannino, P. Ciambelli, R. Liguori, E. Bezzeccheri, A. Rubino, Appl. Catal. B 176–177, 594 (2015)Google Scholar
  133. 133.
    H.U. Lee, Y.C. Lee, S.C. Lee, S.Y. Park, B. Son, J.W. Lee, C.H. Lim, C.J. Choi, M.H. Choi, S.Y. Lee, Y.K. Oh, J. Lee, Chem. Eng. J. 254, 268 (2014)Google Scholar
  134. 134.
    M.A. Mohamed, W.N.W. Salleh, J. Jaafar, A.F. Ismail, N.A.M. Nor, Mater. Chem. Phys. 162, 113 (2015)Google Scholar
  135. 135.
    M.K. Kumar, K. Bhavani, B. Srinivas, S.N. Kumar, M. Sudhakar, G. Naresh, A. Venugopal, Appl. Catal. A 515, 91 (2016)Google Scholar
  136. 136.
    R.M. Mohamed, E. Aazam, Chin. J. Catal. 34, 1267 (2013)Google Scholar
  137. 137.
    Q. Shi, D. Yang, Z. Jiang, J. Li, J. Mol. Catal. B 43, 44 (2006)Google Scholar
  138. 138.
    R. Zheng, L. Lin, J. Xie, Y. Zhu, Y. Xie, J. Phys. Chem. C 112, 15502 (2008)Google Scholar
  139. 139.
    F. Li, Y. Jiang, M. Xia, M. Sun, B. Xue, D. Liu, J. Phys. Chem. C 112, 18134 (2009)Google Scholar
  140. 140.
    N. Comsup, J. Panpranot, P. Praserthdam, Catal. Commun. 11, 1238 (2010)Google Scholar
  141. 141.
    K. Elghniji, J. Soro, S. Rossignol, M. Ksibi, J. Taiwan Inst. Chem. Eng. 43, 132 (2012)Google Scholar
  142. 142.
    N.O. Gopal, H.-H. Lo, T.-F. Ke, C.-H. Lee, C.-C. Chou, J.-D. Wu, S.-C. Sheu, S.-C. Ke, J. Phys. Chem. C 116, 16191 (2012)Google Scholar
  143. 143.
    M. Iwase, K. Yamada, T. Kurisaki, B. Ohtani, H. Wakita, Appl. Catal. B 140–141, 327 (2013)Google Scholar
  144. 144.
    R. Zheng, Y. Guo, C. Jin, J. Xie, Y. Zhu, Y. Xie, J. Mol. Catal. A 319, 46 (2010)Google Scholar
  145. 145.
    Y. Zhang, W. Fu, H. Yang, S. Liu, P. Sun, M. Yuan, D. Ma, W. Zhao, Y. Sui, M. Li, Y. Li, Thin Solid Films 518, 99 (2009)Google Scholar
  146. 146.
    S. Wang, S. Zhou, J. Hazard. Mater. 185, 77 (2011)Google Scholar
  147. 147.
    F. Wang, Y.Y. Sun, J.B. Hatch, H. Xing, X. Zhu, H. Zhang, X. Xu, H. Luo, S. Perera, S. Zhang, H. Zeng, Phys. Chem. Chem. Phys. 17, 17989 (2015)Google Scholar
  148. 148.
    L. Lin, W. Lin, J.L. Xie, Y.X. Zhu, B.Y. Zhao, Y.C. Xie, Appl. Catal. B 75, 52 (2007)Google Scholar
  149. 149.
    M. Iwase, K. Yamada, T. Kurisaki, O.O. Prieto-Mahaney, B. Ohtani, H. Wakita, Appl. Catal. B 132–133, 39 (2013)Google Scholar
  150. 150.
    Y. Xia, Y. Jiang, F. Li, M. Xia, B. Xue, Y. Li, Appl. Surf. Sci. 289, 306 (2014)Google Scholar
  151. 151.
    P. Zheng, H. Wu, J. Guo, J. Dong, S. Jia, Z. Zhu, J. Alloys Compd. 615, 79 (2014)Google Scholar
  152. 152.
    H.-F.F. Yu, S.-T. Te Yang, J. Alloys Compd. 492, 695 (2010)Google Scholar
  153. 153.
    C. Jin, R.Y. Zheng, Y. Guo, J.L. Xie, Y.X. Zhu, Y.C. Xie, J. Mol. Catal. A 313, 44 (2009)Google Scholar
  154. 154.
    H. Luo, T. Takata, Y. Lee, J. Zhao, K. Domen, Chem. Mater. 16, 846 (2004)Google Scholar
  155. 155.
    J.C. Yu, L. Zhang, Z. Zheng, J. Zhao, Chem. Mater. 15, 2280 (2003)Google Scholar
  156. 156.
    J.C. Yu, Chem. Mater. 14, 3808 (2002)Google Scholar
  157. 157.
    G. Yang, Z. Yan, T. Xiao, Appl. Surf. Sci. 258, 4016 (2012)Google Scholar
  158. 158.
    L.G. Devi, R. Kavitha, Mater. Chem. Phys. 143, 1300 (2014)Google Scholar
  159. 159.
    L. Ren, Y. Zeng, D. Jiang, Catal. Commun. 10, 645 (2009)Google Scholar
  160. 160.
    A.S. Mazheika, T. Bredow, V.E. Matulis, O.A. Ivashkevich, J. Phys. Chem. C 115, 17368 (2011)Google Scholar
  161. 161.
    T. Umebayashi, T. Yamaki, S. Yamamoto, A. Miyashita, S. Tanaka, T. Sumita, K. Asai, J. Appl. Phys. 93, 5156 (2003)Google Scholar
  162. 162.
    C. Han, M. Pelaez, V. Likodimos, A.G. Kontos, P. Falaras, K. O’Shea, D.D. Dionysiou, Appl. Catal. B 107, 77 (2011)Google Scholar
  163. 163.
    X. Tang, D. Li, J. Phys. Chem. C 112, 5405 (2008)Google Scholar
  164. 164.
    P. Periyat, S.C. Pillai, D.E. McCormack, J. Colreavy, S.J. Hinder, J. Phys. Chem. C 112, 7644 (2008)Google Scholar
  165. 165.
    T. Ohno, T. Mitsui, M. Matsumura, Chem. Lett. 32, 364 (2003)Google Scholar
  166. 166.
    D. Sayago, P. Serrano, O. Böhme, A. Goldoni, G. Paolucci, E. Román, J. Martín-Gago, Surf. Sci. 482–485, 9 (2001)Google Scholar
  167. 167.
    J. Ju, X. Chen, Y. Shi, J. Miao, D. Wu, Powder Technol. 237, 616 (2013)Google Scholar
  168. 168.
    C.W. Dunnill, Z.A. Aiken, A. Kafizas, J. Pratten, M. Wilson, D.J. Morgan, I.P. Parkin, J. Mater. Chem. 19, 8747 (2009)Google Scholar
  169. 169.
    S.A. Bakar, C. Ribeiro, RSC Adv. 6, 36516 (2016)Google Scholar
  170. 170.
    E.M. Samsudin, S.B.A. Hamid, J.C. Juan, W.J. Basirun, G. Centi, Chem. Eng. J. 280, 330 (2015)Google Scholar
  171. 171.
    M.R. Bayati, A.Z. Moshfegh, F. Golestani-Fard, Appl. Catal. A 389, 60 (2010)Google Scholar
  172. 172.
    R. Ghosh Chaudhuri, S. Paria, Dalton Trans. 43, 5526 (2014)Google Scholar
  173. 173.
    D.-J. Guo, X.-P. Qiu, L.-Q. Chen, W.-T. Zhu, Carbon (New York) 47, 1680 (2009)Google Scholar
  174. 174.
    Z. Zhou, Z. Zhiqiang, Z. Xianyou, W. Ze, D. Limin, Chin. Sci. Bull. 50, 2691 (2005)Google Scholar
  175. 175.
    L. Szatmáry, S. Bakardjieva, J. Šubrt, P. Bezdička, J. Jirkovský, Z. Bastl, V. Brezová, M. Korenko, Catal. Today 161, 23 (2011)Google Scholar
  176. 176.
    Y.-H.H. Lin, H.-T.T. Hsueh, C.-W.W. Chang, H. Chu, Appl. Catal. B 199, 1 (2016)Google Scholar
  177. 177.
    Y.-H.H. Lin, S.-H.H. Chou, H. Chu, J. Nanoparticle Res. 16, 2539 (2014)Google Scholar
  178. 178.
    X. Bu, Y. Wang, J. Li, C. Zhang, J. Alloys Compd. 628, 20 (2015)Google Scholar
  179. 179.
    L. Gomathi Devi, R. Kavitha, B. Nagaraj, Mater. Sci. Semicond. Process. 40, 832 (2015)Google Scholar
  180. 180.
    P.V.R.K. Ramacharyulu, J. Praveen Kumar, G.K. Prasad, B. Sreedhar, Mater. Chem. Phys. 148, 692 (2014)Google Scholar
  181. 181.
    P.V.R.K. Ramacharyulu, D.B. Nimbalkar, J.P. Kumar, G.K. Prasad, S.-C. Ke, RSC Adv. 5, 37096 (2015)Google Scholar
  182. 182.
    C.S. Park, U.K.H. Bangi, H.H. Park, Mater. Lett. 106, 401 (2013)Google Scholar
  183. 183.
    X.W. Wu, D.J. Wu, X.J. Liu, Appl. Phys. A 97, 243 (2009)Google Scholar
  184. 184.
    N. Li, X. Zhang, W. Zhou, Z. Liu, G. Xie, Y. Wang, Y. Du, Inorg. Chem. Front. 1, 521 (2014)Google Scholar
  185. 185.
    J.A. Wang, R. Limas-Ballesteros, T. López, A. Moreno, R. Gómez, O. Novaro, X. Bokhimi, J. Phys. Chem. B 105, 9692 (2001)Google Scholar
  186. 186.
    V.M. Menéndez-Flores, D.W. Bahnemann, T. Ohno, Appl. Catal. B 103, 99 (2011)Google Scholar
  187. 187.
    S.A. Bakar, C. Ribeiro, J. Mol. Catal. A 421, 1 (2016)Google Scholar
  188. 188.
    Y. Ma, J.-W. Fu, X. Tao, X. Li, J.-F. Chen, Appl. Surf. Sci. 257, 5046 (2011)Google Scholar
  189. 189.
    W. Su, Y. Zhang, Z. Li, L. Wu, X. Wang, J. Li, X. Fu, Langmuir 24, 3422 (2008)Google Scholar
  190. 190.
    G. Li, N.M. Dimitrijevic, L. Chen, J.M. Nichols, T. Rajh, K.A. Gray, J. Am. Chem. Soc. 130, 5402 (2008)Google Scholar
  191. 191.
    D.C. Hurum, K.A. Gray, T. Rajh, M.C. Thurnauer, J. Phys. Chem. B 109, 977 (2005)Google Scholar
  192. 192.
    G. Liu, Z. Chen, C. Dong, Y. Zhao, F. Li, G.Q. Lu, H.-M. Cheng, J. Phys. Chem. B 110, 20823 (2006)Google Scholar
  193. 193.
    M. Dorraj, B.T. Goh, N.A. Sairi, P.M. Woi, W.J. Basirun, Appl. Surf. Sci. 439, 999 (2018)Google Scholar
  194. 194.
    Y. Wang, J. Ren, G. Liu, P. Peng, Mater. Chem. Phys. 130, 493 (2011)Google Scholar
  195. 195.
    I. Kartini, D. Menzies, D. Blake, J.C.D. da Costa, P. Meredith, J.D. Riches, G.Q. Lu, J. Mater. Chem. 14, 2917 (2004)Google Scholar
  196. 196.
    G. Liu, C. Sun, X. Yan, L. Cheng, Z. Chen, X. Wang, L. Wang, S.C. Smith, G.Q. Lu, H.-M. Cheng, J. Mater. Chem. 19, 2822 (2009)Google Scholar
  197. 197.
    R.P. Barkul, M.K. Patil, S.M. Patil, V.B. Shevale, S.D. Delekar, J. Photochem. Photobiol. A 349, 138 (2017)Google Scholar
  198. 198.
    Q. Hou, Y. Zheng, J.-F. Chen, W. Zhou, J. Deng, X. Tao, J. Mater. Chem. 21, 3877 (2011)Google Scholar
  199. 199.
    S. Tojo, T. Tachikawa, M. Fujitsuka, T. Majima, J. Phys. Chem. C 112, 14948 (2008)Google Scholar
  200. 200.
    P. Xiang, F. Lv, T. Xiao, L. Jiang, X. Tan, T. Shu, J. Alloys Compd. 741, 1142 (2018)Google Scholar
  201. 201.
    Z. He, L. Xie, S. Song, C. Wang, J. Tu, F. Hong, Q. Liu, J. Chen, X. Xu, J. Mol. Catal. A 319, 78 (2010)Google Scholar
  202. 202.
    Z. He, X. Xu, S. Song, L. Xie, J. Tu, J. Chen, B. Yan, J. Phys. Chem. C 112, 16431 (2008)Google Scholar
  203. 203.
    Z. He, L. Xie, J. Tu, S. Song, W. Liu, Z. Liu, J. Fan, Q. Liu, J. Chen, J. Phys. Chem. C 114, 526 (2010)Google Scholar
  204. 204.
    S. Song, F. Hong, Z. He, H. Wang, X. Xu, J. Chen, Appl. Surf. Sci. 257, 10101 (2011)Google Scholar
  205. 205.
    Z. He, T. Hong, J. Chen, S. Song, Sep. Purif. Technol. 96, 50 (2012)Google Scholar
  206. 206.
    Y. Su, X. Zhang, S. Han, X. Chen, L. Lei, Electrochem. Commun. 9, 2291 (2007)Google Scholar
  207. 207.
    H. Geng, S. Yin, X. Yang, Z. Shuai, B. Liu, J. Phys. Condens. Matter 18, 87 (2006)Google Scholar
  208. 208.
    N. Patel, A. Dashora, R. Jaiswal, R. Fernandes, M. Yadav, D.C. Kothari, B.L. Ahuja, A. Miotello, J. Phys. Chem. C 119, 18581 (2015)Google Scholar
  209. 209.
    N. Feng, A. Zheng, Q. Wang, P. Ren, X. Gao, S. Bin Liu, Z. Shen, T. Chen, F. Deng, J. Phys. Chem. C 115, 2709 (2011)Google Scholar
  210. 210.
    Y. Yu, E. Wang, J. Yuan, Y. Cao, Appl. Surf. Sci. 273, 638 (2013)Google Scholar
  211. 211.
    D. Zhao, Y. Yu, C. Cao, J. Wang, E. Wang, Y. Cao, App. Surf. Sci. 345, 67 (2015)Google Scholar
  212. 212.
    N. Lu, X. Quan, J. Li, S. Chen, H. Yu, G. Chen, J. Phys. Chem. C 111, 11836 (2007)Google Scholar
  213. 213.
    K. Yang, Y. Dai, B. Huang, J. Phys. Chem. C 114, 19830 (2010)Google Scholar
  214. 214.
    N.S. Begum, H.M. Farveez Ahmed, O.M. Hussain, Bull. Mater. Sci. 31, 741 (2008)Google Scholar
  215. 215.
    M. Quesada-González, N.D. Boscher, C.J. Carmalt, I.P. Parkin, ACS Appl. Mater. Interfaces 8, 25024 (2016)Google Scholar
  216. 216.
    W. Zhao, W. Ma, C. Chen, J. Zhao, Z. Shuai, J. Am. Chem. Soc. 126, 4782 (2004)Google Scholar
  217. 217.
    J. Li, N. Lu, X. Quan, S. Chen, H. Zhao, Ind. Eng. Chem. Res. 47, 3804 (2008)Google Scholar
  218. 218.
    B. Wang, F. Zhao, G. Du, S. Porter, Y. Liu, P. Zhang, Z. Cheng, H.K. Liu, Z. Huang, ACS Appl. Mater. Interfaces 8, 16009 (2016)Google Scholar
  219. 219.
    D. Chen, D. Yang, Q. Wang, Z. Jiang, Ind. Eng. Chem. Res. 45, 4110 (2006)Google Scholar
  220. 220.
    E. Grabowska, A. Zaleska, J.W. Sobczak, M. Gazda, J. Hupka, Procedia Chem. 1, 1553 (2009)Google Scholar
  221. 221.
    M. Szkoda, K. Siuzdak, A. Lisowska-Oleksiak, Physica E 84, 141 (2016)Google Scholar
  222. 222.
    D. Li, H. Haneda, S. Hishita, N. Ohashi, N.K. Labhsetwar, J. Fluor. Chem. 126, 69 (2005)Google Scholar
  223. 223.
    Y. Yu, H.-H. Wu, B.-L. Zhu, S.-R. Wang, W.-P. Huang, S.-H. Wu, S.-M. Zhang, Catal. Lett. 121, 165 (2008)Google Scholar
  224. 224.
    D. Li, H. Haneda, S. Hishita, N. Ohashi, Chem. Mater. 17, 2588 (2005)Google Scholar
  225. 225.
    N. Kumar, U. Maitra, V.I. Hegde, U.V. Waghmare, A. Sundaresan, C.N.R. Rao, Inorg. Chem. 52, 10512 (2013)Google Scholar
  226. 226.
    A.M. Czoska, S. Livraghi, M. Chiesa, E. Giamello, S. Agnoli, G. Granozzi, E. Finazzi, C. Di Valentiny, G. Pacchioni, J. Phys. Chem. C 112, 8951 (2008)Google Scholar
  227. 227.
    W. Yu, X. Liu, L. Pan, J. Li, J. Liu, J. Zhang, P. Li, C. Chen, Z. Sun, Appl. Surf. Sci. 319, 107 (2014)Google Scholar
  228. 228.
    I.G. Austin, N.F. Mott, Adv. Phys. 50, 757 (2001)Google Scholar
  229. 229.
    C. Di Valentin, G. Pacchioni, A. Selloni, Phys. Rev. Lett. 97, 166803 (2006)Google Scholar
  230. 230.
    E.M. Samsudin, S.B. Abd Hamid, J.C. Juan, W.J. Basirun, G. Centi, Appl. Surf. Sci. 370, 380 (2016)Google Scholar
  231. 231.
    W. Ho, J.C. Yu, S. Lee, Chem. Commun. (2006).  https://doi.org/10.1039/B515513D Google Scholar
  232. 232.
    S. Tosoni, O. Lamiel-Garcia, D. Fernandez Hevia, J.M. Doña, F. Illas, J. Phys. Chem. C 116, 12738 (2012)Google Scholar
  233. 233.
    J.-G. Yu, J.C. Yu, B. Cheng, S.K. Hark, K. Iu, J. Solid State Chem. 174, 372 (2003)Google Scholar
  234. 234.
    S. Tosoni, D. Fernandez Hevia, Ó González Díaz, F. Illas, J. Phys. Chem. Lett. 3, 2269 (2012)Google Scholar
  235. 235.
    Z. Wu, F. Dong, W. Zhao, S. Guo, J. Hazard. Mater. 157, 57 (2008)Google Scholar
  236. 236.
    X. Li, C. Gao, J. Wang, B. Lu, W. Chen, J. Song, S. Zhang, Z. Zhang, X. Pan, E. Xie, J. Power Sources 214, 244 (2012)Google Scholar
  237. 237.
    J. Sivapatarnkun, K. Hathaisamit, S. Pudwat, Mater. Today Proc. 4, 6495 (2017)Google Scholar
  238. 238.
    M.V.V. Dozzi, E. Selli, Mater. Sci. Semicond. Process. 42, 36 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Anuj Mittal
    • 1
  • Bernabe Mari
    • 2
  • Shankar Sharma
    • 1
  • Vijaya Kumari
    • 1
  • Sanjeev Maken
    • 3
  • Kavitha Kumari
    • 3
  • Naveen Kumar
    • 1
    Email author
  1. 1.Department of ChemistryMaharshi Dayanand UniversityRohtakIndia
  2. 2.Institut de Disseny per la Fabricació Automatitzada -Departament de Física AplicadaUniversitat Politècnica de ValènciaValènciaSpain
  3. 3.Department of ChemistryDeenbandhu Chottu Ram University of Science and TechnologySonipatIndia

Personalised recommendations