Advertisement

Design impact on the performance of Ge PIN photodetectors

  • Xuewei Zhao
  • M. Moeen
  • M. S. Toprak
  • Guilei Wang
  • Jun LuoEmail author
  • Xingxing Ke
  • Zhihua LiEmail author
  • Daoqun Liu
  • Wenwu Wang
  • Chao Zhao
  • Henry H. RadamsonEmail author
Article
  • 31 Downloads

Abstract

This article presents the impact of epitaxial quality, contact resistance and profile of Ge PIN photodetectors (PDs) on dark current and responsivity. The PD structures were processed with either selectively grown Ge with integrated waveguides on SOI wafer or globally grown Ge on the entire wafer. The contact resistance was lowered by introducing NiGe layer prior to the metallization. The n-type doped Ge PIN structure was formed by ion implantation and the contact resistivity was estimated to 2.6 × 10−4 Ω cm2. This value is rather high and it is believed to be due to fomation of defects during implantation. The results show a minor difference in dark currents for selectively and globally grown PDs but in both types, it depends on detector area and the epitaxial quality of Ge. For example, the threading dislocation density (TDD) in non-selectively grown PDs with thickness of 1 µm was estimated to be 106 cm−2 yielding relatively low dark currents while it dramatically changes for PDs with thinner Ge layers where TDD increases to 108 cm−2 and the dark current levels increase almost by 1.5 magnitude. Surprisingly, for selectively grown PDs with Ge thickness of 500 nm, TDD was still low resulting in low dark currents. The dark current densities at − 1 V bias of non-selectively and selectively grown PDs with optimized profile were measured to be 5 mA/cm2 and 47 mA/cm2, respectively, while the responsivity of these detectors were 0.17 A/W and 0.46 A/W at λ ~ 1.55 µm, respectively. Excellent performance for selectively grown PD shows an appropriate choice for detection of 1.55 µm wavelength.

Notes

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2016YFA0301701), and the Youth Innovation Promotion Association of CAS under Grant Nos. 2015097 and 2016112, which are acknowledged.

References

  1. 1.
    S. Luryi, A. Kastalsky, J.C. Bean, New infrared detector on a silicon chip. IEEE Trans. Electron. Dev. 31, 1135–1139 (1984)CrossRefGoogle Scholar
  2. 2.
    M.T. Currie, S.B. Samavedam, T.A. Langdo, C.W. Leitz, E.A. Fitzgerald, Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing. Appl. Phys. Lett. 72, 1718–1720 (1998)CrossRefGoogle Scholar
  3. 3.
    S.B. Samavedam, M.T. Currie, T.A. Langdo, E.A. Fitzgerald, High-quality germanium photodiodes integrated on silicon substrates using optimized relaxed graded buffers. Appl. Phys. Lett. 73, 2125–2127 (1998)CrossRefGoogle Scholar
  4. 4.
    Z. Huang, J. Oh, J.C. Campbell, Back-side-illuminated high-speed Ge photodetector fabricated on Si substrate using thin SiGe buffer layers. Appl. Phys. Lett. 85, 3286–3288 (2004)CrossRefGoogle Scholar
  5. 5.
    L. Colace et al., Ge/Si (001) photodetector for near infrared light. Solid State Phenom. 54, 55–58 (1997)CrossRefGoogle Scholar
  6. 6.
    S. Dongwoo, K. Sanghoon, J. Jiho, K. Gyungock, 36-GHz high-responsivity Ge photodetectors grown by RPCVD. IEEE Photonics Technol. Lett. 21, 672–674 (2009)CrossRefGoogle Scholar
  7. 7.
    Y. Hyun-Yong et al., High-efficiency p-i-n Photodetectors on selective-area-grown Ge for monolithic integration. IEEE Electron. Device Lett. 30, 1161–1163 (2009)CrossRefGoogle Scholar
  8. 8.
    T. Yin et al., 31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate. Opt. Express 15, 13965–13971 (2007)CrossRefGoogle Scholar
  9. 9.
    S. Lischke et al., High bandwidth, high responsivity waveguide-coupled germanium p-i-n photodiode. Opt. Express 23, 27213–27220 (2015)CrossRefGoogle Scholar
  10. 10.
    H. Chen et al., − 1 V bias 67 GHz bandwidth Si-contacted germanium waveguide p-i-n photodetector for optical links at 56 Gbps and beyond. Opt. Express 24, 4622–4631 (2016)CrossRefGoogle Scholar
  11. 11.
    H.H. Radamson, M. Kolahdouz, S. Shayestehaminzadeh, A.A. Farniya, S. Wissmar, Carbon-doped single-crystalline SiGe/Si thermistor with high temperature coefficient of resistance and low noise level. Appl. Phys. Lett. 97, 223507–223507 (2010)CrossRefGoogle Scholar
  12. 12.
    S.G.E. Wissmar, H.H. Radamsson, Y. Yamamoto, B. Tillack, C. Vieider, J.Y. Andersson, SiGe quantum well thermistor materials. Thin Solid Films 517, 337–339 (2008)CrossRefGoogle Scholar
  13. 13.
    J. Kang, R. Zhang, M. Takenaka, S. Takagi, Suppression of dark current in GeOx-passivated germanium metal-semiconductor-metal photodetector by plasma post-oxidation. Opt. Express 23, 16967–16976 (2015)CrossRefGoogle Scholar
  14. 14.
    M. Takenaka, K. Morii, M. Sugiyama, Y. Nakano, S. Takagi, Dark current reduction of Ge photodetector by GeO2 surface passivation and gas-phase doping. Opt. Express 20, 8718–8725 (2012)CrossRefGoogle Scholar
  15. 15.
    J.R. Weber, A. Janotti, P. Rinke, C.G. Van de Walle, Dangling-bond defects and hydrogen passivation in germanium. Appl. Phys. Lett. 91, 142101–142101 (2007)CrossRefGoogle Scholar
  16. 16.
    L. Colace et al., Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates. Appl. Phys. Lett. 76, 1231–1233 (2000)CrossRefGoogle Scholar
  17. 17.
    Z. Zhou, J. He, R. Wang, C. Li, J. Yu, Normal incidence p–i–n Ge heterojunction photodiodes on Si substrate grown by ultrahigh vacuum chemical vapor deposition. Opt. Commun. 283, 3404–3407 (2010)CrossRefGoogle Scholar
  18. 18.
    Q. Fang et al., Demonstration of a vertical pin Ge-on-Si photo-detector on a wet-etched Si recess. Opt. Express 21, 23325–23330 (2013)CrossRefGoogle Scholar
  19. 19.
    H.H. Radamson, L. Thylen, Monolithic Nanoscale Photonics-Electronics Integration in Silicon and Other Group IV Elements, (Elsevier, Amsterdam, 2014)Google Scholar
  20. 20.
    D.K. Schroder, Semiconductor Material and Device Characterization, (Wiley, New York, 2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xuewei Zhao
    • 1
    • 2
  • M. Moeen
    • 5
  • M. S. Toprak
    • 5
  • Guilei Wang
    • 2
    • 3
  • Jun Luo
    • 2
    • 3
    Email author
  • Xingxing Ke
    • 2
    • 3
  • Zhihua Li
    • 2
    • 3
    Email author
  • Daoqun Liu
    • 2
    • 3
  • Wenwu Wang
    • 2
    • 3
  • Chao Zhao
    • 2
    • 3
  • Henry H. Radamson
    • 2
    • 3
    • 4
    Email author
  1. 1.University of Science and Technology of ChinaHefeiPeople’s Republic of China
  2. 2.Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of MicroelectronicsChinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  4. 4.Department of Electronics DesignMid Sweden UniversitySundsvallSweden
  5. 5.KTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations