Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19359–19367 | Cite as

Tailoring sub-bandgap of CuGaS2 thin film via chromium doping by facile chemical spray pyrolysis technique

  • S. KalainathanEmail author
  • N. Ahsan
  • T. Hoshii
  • Y. Okada
  • T. Logu
  • K. Sethuraman


Tailoring sub-bandgaps using intermediate states or bands with wide bandgap semiconductors is a promising and novel technique for the application in high efficiency solar cells. Pure and chromium (Cr) doped chalcopyrite CuGaS2 (CGS) thin films were prepared by facile chemical spray pyrolysis technique and annealed in vacuum, nitrogen and argon atmospheres. Structural characterization confirmed that the prepared films are in tetragonal chalcopyrite structure with polycrystalline nature. No secondary phases were present in both pure and Cr doped CGS thin films. Presence of Cr ions was confirmed by X-ray photoelectron spectroscopy and energy dispersive analysis of X-rays analyses. The optical direct and sub band gap of pristine and Cr doped CGS thin films were measured from UV absorption data. It was revealed that the pure CGS film has a band gap of 2.40 eV sub-band gap values were observed at 2.25 and 2.15 eV for 1 and 2 wt% of Cr doping, respectively. These gaps can be ascribed to the formation of intermediate bands due to hybridization of Cr d-states into the host electronic structure. Meanwhile, photoconductivity study demonstrated the photo-electric activity of the intermediate bands in the Cr doped thin films.



The authors would like to thank Tokyo University and VIT University for their constant support and encouragement. This work was performed under DST-JSPS bilateral project.


  1. 1.
    Y. Okada, N.J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C.C. Phillips, D.J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, J.F. Guillemoles, Intermediate band solar cells: recent progress and future directions. Appl. Phys. Rev. 2, 021302 (2015)CrossRefGoogle Scholar
  2. 2.
    P. Chen, M. Qin, H. Chen, C. Yang, Y. Wang, F. Huang, Cr incorporation in CuGaS2 chalcopyrite: a new intermediate-band photovoltaic material with wide-spectrum solar absorption. Phys. Status Solidi A 210, 1098–1102 (2013)CrossRefGoogle Scholar
  3. 3.
    M. Han, X. Zhang, Z. Zeng, The investigation of transition metal doped CuGaS2 for promising intermediate band materials. RSC Adv. 4, 62380–62386 (2014)CrossRefGoogle Scholar
  4. 4.
    N. Ahsan, N. Miyashita, M.M. Islam, K.M. Yu, W. Walukiewicz, Y. Okada, Two-photon excitation in an intermediate band solar cell structure. Appl. Phys. Lett. 100, 172111 (2012)CrossRefGoogle Scholar
  5. 5.
    N. López, A. Reichertz, K.M. Yu, K. Campman, W. Walukiewicz, Engineering the electronic band structure for multiband solar cells. Phys. Rev. Lett. 106, 028701 (2011)CrossRefGoogle Scholar
  6. 6.
    Q. Shao, A.A. Balandin, A.I. Fedoseyev, M. Turowski, Intermediate-band solar cells based on quantum dot supracrystals. Appl. Phys. Lett. 91, 163503–163503 (2007)CrossRefGoogle Scholar
  7. 7.
    J. Wu, D. Shao, Zh Li, M.O. Manasreh, V.P. Kunets, Zh.M. Wang, G.J. Salamo, Intermediate-band material based on GaAs quantum rings for solar cells. Appl. Phys. Lett. 95, 071908 (2009)CrossRefGoogle Scholar
  8. 8.
    D.C. Johnson, I.M. Ballard, K.W.J. Barnham, J.P. Connolly, M. Mazzer, A. Bessie`re, C. Calder, G. Hill, J.S. Roberts, Observation of photon recycling in strain-balanced quantum well solar cells. Appl. Phys. Lett. 90, 213505 (2007)CrossRefGoogle Scholar
  9. 9.
    A. Martí, D.F. Marrón, A. Luque, Evaluation of the efficiency potential of intermediate band solar cells based on thin-film chalcopyrite materials. J. Appl. Phys. 103, 073706 (2008)CrossRefGoogle Scholar
  10. 10.
    W.-J. Jeong, G.-C. Park, Structural and electrical properties of CuGaS2 thin films by electron beam evaporation. Sol. Energy Mater. Sol. Cells 75, 93–100 (2003)CrossRefGoogle Scholar
  11. 11.
    Z. Zhao Zongyan, Dacheng, Y. Juan, Analysis of the electronic structures of 3d transition metals doped CuGaS2 based on DFT calculations. J. Semicond. 35, 1 (2014)Google Scholar
  12. 12.
    T. Teranishi, K. Sato, K. Kondo, Optical properties of a magnetic semiconductor: chalcopyrite CuFeS2: I. Absorption spectra of CuFeS2 and Fe-Doped CuAlS2 and CuGaS2. J. Phys. Soc. Japn. 36, 1618–1624 (1974)CrossRefGoogle Scholar
  13. 13.
    H.J. Von Bardeleben, A. Goltzene, B. Meyer, Effects of iron content and stoichiometry on the coloration of CuGaS2. Phys. Status Solidi A 48, 145 (1978)CrossRefGoogle Scholar
  14. 14.
    K. Sato, T. Teranishi, Effect of delocalization of d-electrons on the optical reflectivity spectra of CuGa1–xFexS2 and CuAl1–xFexS2 systems. Jpn. J. Appl. Phys. 19S3(Supplement 19–3), 101 (1980)CrossRefGoogle Scholar
  15. 15.
    Y. Seminóvski, P. Palacios, P. Wahnón, Intermediate band position modulated by Zn addition in Ti doped CuGaS2. Thin Solid Films 519, 7517–7521 (2011)CrossRefGoogle Scholar
  16. 16.
    Y. Seminóvski, P. Palacios, J.C. Conesa, Thermodynamics of zinc insertion in CuGaS2:Ti, used as a modulator agent in an intermediate-band photovoltaic material. Comput. Theor. Chem. 975, 134–137 (2011)CrossRefGoogle Scholar
  17. 17.
    P. Palacios, K. Sánchez, J.C. Conesa, Theoretical modelling of intermediate band solar cell materials based on metal-doped chalcopyrite compounds. Thin Solid Films 515, 6280–6284 (2007)CrossRefGoogle Scholar
  18. 18.
    Y.J. Zhao, A. Zunger, Electronic structure and ferromagnetism of Mn substituted CuAlS2, CuGaS2, CuInS2, CuGaSe2, and CuGaTe2. Phys. Rev. B 69, 104422 (2004)CrossRefGoogle Scholar
  19. 19.
    Y.J. Zhao, A. Zunger, Site preference for Mn substitution in spintronic CuMIIIX2 VI chalcopyrite semiconductors. Phys. Rev. B 69, 075208 (2004)CrossRefGoogle Scholar
  20. 20.
    S. Picozzi, Y.J. Zhao, A.J. Freeman, Mn-doped CuGaS2 chalcopyrites: an ab initio study of ferromagnetic semiconductors. Phys. Rev. B 66, 205206 (2002)CrossRefGoogle Scholar
  21. 21.
    P. Palacios, I. Aguilera, P. Wahnon et al., Thermodynamics of the formation of Ti- and Cr-doped CuGaS2 intermediate-band photovoltaic materials. J. Phys. Chem. C 112(25), 9525–9529 (2008)CrossRefGoogle Scholar
  22. 22.
    P. Palacios, I. Aguilera, P. Wahnón, Ab-initio vibrational properties of transition metal chalcopyrite alloys determined as high-efficiency intermediate-band photovoltaic materials. Thin Solid Films 516, 7070–7074 (2008)CrossRefGoogle Scholar
  23. 23.
    I. Aguilera, P. Palacios, P. Wahnón, Optical properties of chalcopyrite-type intermediate transition metal band materials from first principles. Thin Solid Films 516, 7055–7059 (2008)CrossRefGoogle Scholar
  24. 24.
    K. Oishi, S. Kobayashi, S. Ohta, N. Tsuboi, F. Kaneko, Orientation of CuGaS2 thin films on (1 0 0) GaAs and GaP substrates. J. Cryst. Growth 177, 88–94 (1997)CrossRefGoogle Scholar
  25. 25.
    F. Smaïli, M. Kanzari, Effect of oxygen on the surface morphology of CuGaS2 thin films. Mater. Sci. Eng. C 29, 1969–1973 (2009)CrossRefGoogle Scholar
  26. 26.
    G. Niu, S. Yang, H. Li, J. Yi, M. Wang et al., Electrodeposition of Cu-Ga precursor layer from deep eutectic solvent for CuGaS2 solar energy thin film. J. Electrochem. Soc. 161, D333–D338 (2014)CrossRefGoogle Scholar
  27. 27.
    Y.S. Lee, J.-H. Cha, B.K. Min, D.-Y. Jung, Electrophoretic deposition of Ga–Cu core–shell nanocomposites for CuGaS2 thin films. Sol. Energy Mater. Sol. Cells 125, 138–144 (2014)CrossRefGoogle Scholar
  28. 28.
    M. Wang, S. Yang, H. Li, J. Yi, M. Li et al., Double pulse electrodeposition of Cu-Ga precursor layer for CuGaS2 solar energy thin film. J. Electrochem. Soc. 160, D459 (2013)CrossRefGoogle Scholar
  29. 29.
    C. Guillén, J. Herrero, CuInS2 and CuGaS2 thin films grown by modulated flux deposition with various Cu contents. Phys. Status Solidi A 203, 2438 (2006)CrossRefGoogle Scholar
  30. 30.
    S. Liu, L. Nie, R. Yuan, Growth, Structure and optical characterization of CuGaS2 thin films obtained by spray pyrolysis. Chalcogenide Lett. 12(3), 111–116 (2015)Google Scholar
  31. 31.
    C. Dong, PowderX, Windows-95-based program for powder X-ray diffraction data processing. J. Appl. Crystallogr. 32, 4 (1999)Google Scholar
  32. 32.
    Y.X. Pang, X. Bao, Influence of temperature, ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles. J. Eur. Ceram. Soc. 23, 1697–1704 (2003)CrossRefGoogle Scholar
  33. 33.
    D. Mardare, M. Tasca, M. Delibas, G.I. Rusu, On the structural properties and optical transmittance of TiO2 r.f. sputtered thin films. Appl. Surf. Sci. 156, 200–206 (2000)CrossRefGoogle Scholar
  34. 34.
    S. Kalainathan, N. Ahsan, T. Hoshii, Y. Okada, T. Logu, K. Sethuraman, Synthesis, structural and optical studies of Yb doped CuGaS2 thin films prepared by facile chemical spray pyrolysis technique. Mech. Mater. Sci. Eng. 11, 1 (2017)Google Scholar
  35. 35.
    J. Tauc, Amorphous and Liquid Semiconductors (Plenumm, London, 1974)CrossRefGoogle Scholar
  36. 36.
    T. Ahsan, S. Kalainathan, N. Miyashita, T. Hoshii, Y. Okada, Characterization of Cr doped CuGaS2 thin films synthesized by chemical spray pyrolysis. Mech. Mater. Sci. Eng. MMSE J. (2017). CrossRefGoogle Scholar
  37. 37.
    N. Ali, A. Hussain, R. Ahmed, M.K. Wang, C. Zhao, B. Ul Haq, Y.Q. Fu, Advances in nanostructured thin film materials for solar cell applications. Renew. Sustain. Energy Rev. 59, 726–737 (2016)CrossRefGoogle Scholar
  38. 38.
    N. Schneider, M. Bouttemy, P. Genevée, D. Lincot, F. Donsanti, Deposition of ultra thin CuInS2 absorber layers by ALD for thin film solar cells at low temperature (down to 150 °C). Nanotechnology 26, 5 (2015)CrossRefGoogle Scholar
  39. 39.
    L. Thirumalaisamy, R. Raliya, S. Kavadiya, S. Palanivel, K. Sethuraman, P. Biswas, Hierarchical architecture of CuInS2 microsphere thin films: altering laterally aligned crystallographic plane growth by Cd and V doping. CrystEngComm 19, 6602–6611 (2017)CrossRefGoogle Scholar
  40. 40.
    T. Logu, K. Sankarasubramanian, P. Soundarrajan, K. Ramamurthi, K. Sethuraman, Materials design of n-type CuInS2 thin films with reduction of Cu–Au. Phase using Cd2+ ions. J. Anal. Appl. Pyrolysis 114, 293–301 (2015)CrossRefGoogle Scholar
  41. 41.
    J. Pantforder, R. Domnick, Ch Ammon, G. Held, H.P. Steinruck, Formation of a new type of chromium oxide by deposition of chromium onto water precovered Cu(1 1 1). Surf. Sci. 480, 73–83 (2001)CrossRefGoogle Scholar
  42. 42.
    Q. Zhongping Liu, R. Hao, L. Tang, Wang, K. Tang, Facile one-pot synthesis of polytypic CuGaS2 nanoplates. Nanoscale Res. Lett. 8, 524 (2013)CrossRefGoogle Scholar
  43. 43.
    K. Sankarasubramanian, P. Soundarrajan, T. Logu, S. Kiruthika, K. Sethuraman, R. Ramesh Babu, K. Ramamurthi, Influence of Mn doping on structural, optical and electrical properties of CdO thin films prepared by cost effective spray pyrolysis method. Mater. Sci. Semicond. Process. 26, 346–353 (2014)CrossRefGoogle Scholar
  44. 44.
    J. Hu, B. Deng, C. Wang, K. Tang, Y. Qian, Hydrothermal preparation of CuGaS2 crystallites with different morphologies. Solid State Commun. 121, 493–496 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. Kalainathan
    • 1
    • 2
    Email author
  • N. Ahsan
    • 2
  • T. Hoshii
    • 2
  • Y. Okada
    • 2
  • T. Logu
    • 3
  • K. Sethuraman
    • 3
  1. 1.Centre for Crystal GrowthVellore Institute of TechnologyVelloreIndia
  2. 2.Research Center for Advanced Science and Technology (RCAST)The University of TokyoTokyoJapan
  3. 3.School of PhysicsMadurai Kamaraj UniversityMaduraiIndia

Personalised recommendations