Advertisement

Thermal stability and electrical properties of BiFe1−xMxO3 (M = Al3+, Ga3+) ceramics

  • Tian-Fu Cao
  • Jian-Qing DaiEmail author
  • Jian-Hui Zhu
  • Xiao-Ya Li
  • Xiao-Wei Wang
Article
  • 9 Downloads

Abstract

BiFeO3 (BFO) is a fascinating multiferroic material, exhibiting ferroelectric and G-type antiferromagnetic characteristics simultaneously. In this work, non-magnetic Al3+ and Ga3+ doped BFO (BFAO and BFGO) ceramics were synthesized via sol–gel and conventional sintering methods. Structural, thermal stability and electrical properties of samples were analyzed in detail. X-ray diffraction (XRD) patterns of powder and ceramic samples demonstrated efficient crystallization, consisting of rhombohedral structures with R3c space group for small amounts of added dopant. Thermal analysis exhibited that BFO decomposes into Bi25FeO39 and Bi2Fe4O9 at 950 °C. It is found that Al3+ and Ga3+ doping readily contribute to decomposition, as supported by calculations from first-principles. BiAlO3 and BiGaO3 are unstable and would spontaneously decompose, if they could be synthesized using ordinary technology. As a result, decomposition temperatures of doped powders decreased to ~ 680 °C. Dielectric behavior can be explained through the Maxwell–Wanger model and Koop’s theory. Dielectric loss decreased with increasing substitution. Leakage current density of doped ceramics became 2–3 orders of magnitude lower than that of BFO ceramic, improving performance and championing applications of modified BFO in future.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51762030 and 51462019).

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest to declare.

References

  1. 1.
    S. Trolier-Mckinstry, P. Muralt, J. Electroceram. 12, 7–17 (2004)CrossRefGoogle Scholar
  2. 2.
    D. Matthew, J. Electroceram. 19, 25–47 (2007)CrossRefGoogle Scholar
  3. 3.
    H. Wang, B. Wang, Q.K. Li, Z.Y. Zhu, R. Wang, C.H. Woo, Phys. Rev. B 75, 1–9 (2007)Google Scholar
  4. 4.
    C.L. Li, H. Wang, B. Wang, R. Wang, Appl. Phys. Lett. 91, 071902 (2007)CrossRefGoogle Scholar
  5. 5.
    J.M. Moreau, C. Michel, R. Gerson, W.J. James, J. Phys. Chem. Solids 32, 1315–1320 (1971)CrossRefGoogle Scholar
  6. 6.
    J.T. Heron, D.G. Schlom, R. Ramesh, Appl. Phys. Rev. 1, 021303 (2014)CrossRefGoogle Scholar
  7. 7.
    H. Béa, M. Gajek, M. Bibes, A. Barthélémy, J. Phys.: Condens. Matter 20, 434221 (2008)Google Scholar
  8. 8.
    C. Binek, B. Doudin, J. Phys.: Condens. Matter 17, L39–L44 (2005)Google Scholar
  9. 9.
    A. Azam, A. Jawad, A.S. Ahmed, M. Chaman, A.H. Naqvi, J. Alloys Compd. 509, 2909–2913 (2011)CrossRefGoogle Scholar
  10. 10.
    A. Jawad, A.S. Ahmed, S.S.Z. Ashraf, M. Chaman, A. Azam, J. Alloys Compd. 530, 63–70 (2012)CrossRefGoogle Scholar
  11. 11.
    B.P. Reddy, M.C. Sekhar, B.P. Prakash, Y. Suh, S.H. Park, Ceram. Int. 44, 19512–19521 (2018)CrossRefGoogle Scholar
  12. 12.
    A. Mukherjee, S. Basu, P.K. Manna, S.M. Yusuf, M. Pal, J. Mater. Chem. C 2, 5885–5891 (2014)CrossRefGoogle Scholar
  13. 13.
    J.S. Park, Y.J. Yoo, J.S. Hwang, J.-H. Kang, B.W. Lee, Y.P. Lee, J. Appl. Phys. 115, 013904 (2014)CrossRefGoogle Scholar
  14. 14.
    F. Yan, M.O. Lai, L. Lu, T.J. Zhu, J. Phys. Chem. C 114, 6994–6998 (2010)CrossRefGoogle Scholar
  15. 15.
    A. Kumar, K.L. Yadav, Mater. Sci. Eng. B 176, 227–230 (2011)CrossRefGoogle Scholar
  16. 16.
    A.A. Belik, T. Wuernisha, T. Kamiyama, K. Mori, M. Maie, T. Nagai, Y. Matsui, E. Takayama-Muromachi, Chem. Mater. 18, 133–139 (2006)CrossRefGoogle Scholar
  17. 17.
    H. Wang, B. Wang, R. Wang, Q.K. Li, Physica B 390, 96–100 (2007)CrossRefGoogle Scholar
  18. 18.
    P. Suresh, P.D. Babu, S. Srinath, Ceram. Int. 42, 4176–4184 (2016)CrossRefGoogle Scholar
  19. 19.
    A.A. Belik, S.Y. Stefanovich, B.I. Lazoryak, E. Takayama-Muromachi, Chem. Mater. 18, 1964–1968 (2006)CrossRefGoogle Scholar
  20. 20.
    A.A. Belik, S. Iikubo, K. Kodama, N. Igawa, S.I. Shamoto, M. Maie, T. Nagai, Y. Matsui, Y.S. Stefanovich, B.I. Lazoryak, E. Takayama-Muromachi, J. Am. Chem. Soc. 128, 706–707 (2006)CrossRefGoogle Scholar
  21. 21.
    H. Yusa, A.A. Belik, E. Takayama-Muromachi, N. Hirao, Y. Ohishi, Phys. Rev. B 80, 214103 (2009)CrossRefGoogle Scholar
  22. 22.
    A.A. Belik, D.A. Rusakov, T. Furubayashi, E. Takayama-Muromachi, Chem. Mater. 43, 3056–3064 (2012)CrossRefGoogle Scholar
  23. 23.
    V.A. Khomchenko, D.A. Kiselev, J.M. Vieira, L. Jian, A.L. Kholkin, A.M.L. Lopes, Y.G. Pogorelov, J.P. Araujo, M. Maglione, J. Appl. Phys. 103, 024105 (2008)CrossRefGoogle Scholar
  24. 24.
    I.K. Hong, H.S. Han, C.H. Yoon, H.N. Ji, W.P. Tai, J.S. Lee, J. Intell. Mater. Syst. Struct. 24, 1343–1349 (2012)CrossRefGoogle Scholar
  25. 25.
    M. Sakar, S. Balakumar, P. Saravanan, S.N. Jaisankar, Mater. Des. 94, 487–495 (2016)CrossRefGoogle Scholar
  26. 26.
    S.V. Vijayasundaram, G. Suresh, R. Kanagadurai, Appl. Phys. A 121, 681–688 (2015)CrossRefGoogle Scholar
  27. 27.
    P. Chen, S.H. Wu, P. Li, J.W. Zhai, B. Shen, Inorg. Chem. Front. 5, 2300–2305 (2018)CrossRefGoogle Scholar
  28. 28.
    J.Q. Dai, J.W. Xu, J.H. Zhu, Appl. Surf. Sci. 392, 135–143 (2017)CrossRefGoogle Scholar
  29. 29.
    J.Q. Dai, J.W. Xu, J.H. Zhu, ACS Appl. Mater. Interfaces 9, 3168–3177 (2017)CrossRefGoogle Scholar
  30. 30.
    E. Heifets, E.A. Kotomin, A.A. Bagaturyants, J. Maier, J. Phys. Chem. Lett. 6, 2847–2851 (2015)CrossRefGoogle Scholar
  31. 31.
    G. Makov, M.C. Payne, Phys. Rev. B 51, 4014–4022 (1995)CrossRefGoogle Scholar
  32. 32.
    R.C. Weast, M.J. Astle, W.H. Beyer, CRC Handbook of Chemistry And Physics, 69th edn. (Florida CRC Press, Boca Raton, 1987), pp. 156–157, 1236–1248, 1253–1259, 1745–1747Google Scholar
  33. 33.
    J.H. Zhu, J.Q. Dai, J.W. Xu, X.Y. Li, Ceram. Int. 44, 9215–9220 (2018)CrossRefGoogle Scholar
  34. 34.
    S. Chandel, P. Thakur, S.S. Thakur, V. Kanwar, M. Tomar, V. Gupta, A. Thakur, Ceram. Int. 44, 4711–4718 (2018)CrossRefGoogle Scholar
  35. 35.
    Z. Dai, Y. Akishige, J. Phys. D Appl. Phys. 43, 445403 (2010)CrossRefGoogle Scholar
  36. 36.
    G.W. Pabst, L.W. Martin, Y.-H. Chu, R. Ramesh, Appl. Phys. Lett. 90, 072902 (2007)CrossRefGoogle Scholar
  37. 37.
    L.F. Zhu, B.P. Zhang, J.Q. Duan, B.W. Xun, N. Wang, Y.C. Tang, G.L. Zhao, J. Eur. Ceram. Soc. 38, 3463–3471 (2018)CrossRefGoogle Scholar
  38. 38.
    Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, Phys. Lett. 84, 1731–1733 (2004)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Materials Science and EngineeringKunming University of Science and TechnologyKunmingPeople’s Republic of China

Personalised recommendations