Advertisement

Synthesis and optical properties of coil-ball-like CaMoO4 hierarchical architectures

  • LuPing Zhu
  • Yuqin Mao
  • Qiang Chen
  • Yongjin Zou
  • Xinying Shen
  • GuiHong Liao
Article

Abstract

Coil-ball-like CaMoO4 hierarchical architectures were fabricated via a simple solvothermal route. The structures and compositions of the as-prepared samples were characterized using X-ray powder diffraction, scanning electron microscopy, UV–vis spectrophotometer and Brunauer–Emmett–Teller. A series of experiments of reaction conditions including reaction time and the amount of N,N-dimethylacetamide (DMAc) were carefully carried out. The results showed that the amount of DMAc played a key role in the morphology of the products and the formation of the coil-ball-like CaMoO4 hierarchical architectures was governed by an oriented aggregation, assembly and Ostwald ripening mechanism. The photoluminescence (PL) properties of the as-synthesized CaMoO4 samples at different time intervals were investigated. The results revealed that all samples exhibit a broad emission peak in the visible region (390–600 nm) with 300 nm excitation wavelength at room temperature, but show different PL intensity.

Notes

Acknowledgements

This research was jointly sponsored by the Shanghai Municipal Natural Science Foundation (Grant No. 18ZR1415700), the Guangxi Key Laboratory of Information Materials (GUET) (Grant No. 171011-K), the Leap Project and Postgraduate fund (SSPU) (Grant Nos. EGD18XQD26, EGD18YJ0049 and EGD17YJ0005), the key subject of SSPU (Grant No. Material Science and Engineering, XXKZD1601), and the Gaoyuan Discipline of Shanghai–Environmental Science and Engineering (Resource Recycling Science and Engineering).

References

  1. 1.
    V.B. Mikhailik, H. Kraus, M. Itoh, D. Iri, M. Uchida, J. Phys. Condens. Matter 17, 7209 (2005)CrossRefGoogle Scholar
  2. 2.
    J.W. Yoon, J.H. Ryu, K.B. Shim, Mater. Sci. Eng. B 27, 154 (2006)CrossRefGoogle Scholar
  3. 3.
    D. Spassky, S. Ivanov, I. Kitaeva, V. Kolobanov, V. Mikhailin, L. Ivleva, I. Voronina, Phys. Status Solidi C 2, 65 (2005)CrossRefGoogle Scholar
  4. 4.
    S.M. Hosseinpour-mashkani, A. Sobhani-Nasab, M. Mehrzad, J. Mater. Sci. Mater. Electron. 27, 5758 (2016)CrossRefGoogle Scholar
  5. 5.
    S.M. Hosseinpour-mashkani, M. Maddahfar, A. Sobhani-Nasab, J. Mater. Sci. Mater. Electron. 27, 474 (2016)CrossRefGoogle Scholar
  6. 6.
    M. Ramezani, S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab, H. Ghasemi Estarki, J. Mater. Sci. Mater. Electron. 26, 7588 (2015)CrossRefGoogle Scholar
  7. 7.
    J.A. Groenink, C. Hakfoort, G. Blasse, Phys. Status Solidi A 54, 329 (1979)CrossRefGoogle Scholar
  8. 8.
    B.K. Chandrasekhar, W.B. White, Mater. Res. Bull. 25, 1513 (1990)CrossRefGoogle Scholar
  9. 9.
    W.S. Cho, M. Yashima, M. Kakihana, A. Kudo, T. Sakata, M. Yoshimura, J. Am. Ceram. Soc. 80, 765 (1997)CrossRefGoogle Scholar
  10. 10.
    S. Belogurov, V. Kornoukhov, A. Annenkov, A. Borisevich, A. Fedorov, IEEE Trans. Nucl. Sci. 52, 4 (2005)CrossRefGoogle Scholar
  11. 11.
    J.H. Ryu, J.W. Yoon, C.S. Lim, W.C. Oh, K.B. Shim, J. Alloys Compd. 390, 245 (2005)CrossRefGoogle Scholar
  12. 12.
    Q. Gong, X.F. Qian, X.D. Ma, Z.K. Zhu, Cryst. Growth Des. 6, 1821 (2006)CrossRefGoogle Scholar
  13. 13.
    Y. Yin, Y. Gao, Y. Sun, B. Zhou, L. Ma, X. Wu, X. Zhang, Mater. Lett. 64, 602 (2010)CrossRefGoogle Scholar
  14. 14.
    G. Fan, Z. Ma, Z. Huang, J. Therm. Anal. Calorim. (2013).  https://doi.org/10.1007/s10973-013-3515-3 Google Scholar
  15. 15.
    A.P. de Azevedo Marques, V.M. Longo, D.M. de Melo, P.S. Pizani, E.R. Leite, J.A. .Varela, E. Longo, J. Solid State Chem. 181, 1249 (2008)CrossRefGoogle Scholar
  16. 16.
    W. Wang, Y. Hu, J. Goebl, Z. Lu, L. Zhen, Y. Yin, J. Phys. Chem. C 113, 16414 (2009)CrossRefGoogle Scholar
  17. 17.
    Y.S. Luo, X.J. Dai, W.D. Zhang, Y. Yang, C.Q. Sun, S.Y. Fu, Dalton Trans. 39, 2226 (2010)CrossRefGoogle Scholar
  18. 18.
    C.T. Cherian, M.V. Reddy, S.C. Haur, B.V.R. Chowdari, ACS Appl. Mater. Interfaces 5, 918 (2013)CrossRefGoogle Scholar
  19. 19.
    F.K.F. Oliveira, M.C. Oliveira, L. Gracia, R.L. Tranquilin, C.A. Paskocimas, F.V. Motta, E. Longo, J. Andres, M.R.D. Bomio, J. Phys. Chem. Solids 114, 141 (2018)CrossRefGoogle Scholar
  20. 20.
    Y. Jin, J.H. Zhang, S.Z. Lu, H.F. Zhao, X. Zhang, X.J. Wang, J. Phys. Chem. C 112, 5860 (2008)CrossRefGoogle Scholar
  21. 21.
    H.T. Shi, L.M. Qi, J.M. Ma, H.M. Cheng, J. Am. Chem. Soc. 125, 3450 (2003)CrossRefGoogle Scholar
  22. 22.
    Y.S. Luo, S.Q. Li, Q.F. Ren, J.P. Liu, L.L. Xing, Y. Wang, Y. Yu, Z.J. Jia, J.L. Li, Cryst. Growth Des. 7, 87 (2007)CrossRefGoogle Scholar
  23. 23.
    L.P. Zhu, L.L. Wang, N.C. Bing, C. Huang, L.J. Wang, G.H. Liao, ACS Appl. Mater. Interfaces 5, 12478 (2013)CrossRefGoogle Scholar
  24. 24.
    L.P. Zhu, G.H. Liao, N.C. Bing, L.L. Wang, Y. Yang, H.Y. Xie, CrystEngComm 12, 3791 (2010)CrossRefGoogle Scholar
  25. 25.
    L.P. Zhu, H.M. Xiao, W.D. Zhang, Y. Yang, S.Y. Fu, Cryst. Growth Des. 8, 1113 (2008)CrossRefGoogle Scholar
  26. 26.
    L.P. Zhu, W.D. Zhang, H.M. Xiao, Y. Yang, S.Y. Fu, J. Phys. Chem. C 112, 10073 (2008)CrossRefGoogle Scholar
  27. 27.
    L.P. Zhu, W.D. Zhang, H.M. Xiao, G. Yang, S.Y. Fu, Cryst. Growth Des. 8, 957 (2008)CrossRefGoogle Scholar
  28. 28.
    Q. Zhang, S.J. Liu, S.H. Yu, J. Mater. Chem. 19, 191 (2009)CrossRefGoogle Scholar
  29. 29.
    L.P. Zhu, N.C. Bing, L.L. Wang, H.Y. Jin, G.H. Liao, L.J. Wang, Dalton Trans. 41, 2959 (2012)CrossRefGoogle Scholar
  30. 30.
    M.A. Butler, J. Appl. Phys. 48, 1914 (1977)CrossRefGoogle Scholar
  31. 31.
    V.M. Longo, A.T. Figueiredo, A.B. Campos, J.W.M. Espinosa, A.C. Hernandes, C.A. Taft, J. Phys. Chem. A 112, 8920 (2008)CrossRefGoogle Scholar
  32. 32.
    D.V. Bavykin, V.N. Parmon, A.A. Lapkin, F.C. Walsh, J. Mater. Chem. 14, 3370 (2004)CrossRefGoogle Scholar
  33. 33.
    Y. Xiang, J. Song, G. Hu, Y. Liu, Appl. Surf. Sci. 349, 374 (2015)CrossRefGoogle Scholar
  34. 34.
    Y.G. Wang, J.F. Ma, J.T. Tao, X.Y. Zhu, J. Zhou, Z.Q. Zhao, Ceram. Int. 33, 693 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • LuPing Zhu
    • 1
  • Yuqin Mao
    • 1
  • Qiang Chen
    • 1
  • Yongjin Zou
    • 2
  • Xinying Shen
    • 1
  • GuiHong Liao
    • 3
  1. 1.School of Environmental and Materials Engineering, Research Center of Resource Recycling Science and EngineeringShanghai Polytechnic University (SSPU)ShanghaiChina
  2. 2.Guangxi Key Laboratory of Information MaterialsGuilin University of Electronic Technology (GUET)GuilinChina
  3. 3.Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations