Silver decorated Cu/ZnO photocomposite: efficient green degradation of malachite

  • A. ModwiEmail author
  • Kamal K. Taha
  • L. Khezami
  • M. Bououdina
  • A. Houas


Due to their magnificent efficiency to the degradation of hazardous organic pollutants, nanomaterials possessing visible light-driven photocatalytic activity have drawn considerable attention. Herein, Ag decorated Zn0.95Cu0.05O photocomposites have been synthesized via a sol–gel method and characterized as potential photocatalysts for the degradation of malachite green (MG). The formation of the nanocomposites is confirmed by XRD, EDS mapping and TEM analyses. The UV–Vis analysis reveals a gradual decrease in the optical band gap with increasing Ag content, which enhances its visible light absorption and ultimately improves the photocatalytic activity as reflected by the efficient photodegradation of MG dye. Particularly, Zn0.94Cu0.05Ag0.03O exhibits the lowest energy gap and very high photocatalytic activity for the degradation MG. This research demonstrates a new pathway for the preparation of Ag incorporated oxide-based nanostructured composites as promising photocatalysts.


  1. 1.
    W. Wang, M.O. Tadé, Z. Shao, Research progress of perovskite materials in photocatalysis-and photovoltaics-related energy conversion and environmental treatment. Chem. Soc. Rev. 44(15), 5371–5408 (2015)Google Scholar
  2. 2.
    C. Yu et al., Design and fabrication of microsphere photocatalysts for environmental purification and energy conversion. Chem. Eng. J. 287, 117–129 (2016)Google Scholar
  3. 3.
    H. Wang et al., Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43(15), 5234–5244 (2014)Google Scholar
  4. 4.
    M. Rauf, S.S. Ashraf, Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 151(1–3), 10–18 (2009)Google Scholar
  5. 5.
    R. Daghrir, P. Drogui, D. Robert, Modified TiO2 for environmental photocatalytic applications: a review. Ind. Eng. Chem. Res. 52(10), 3581–3599 (2013)Google Scholar
  6. 6.
    C.E. Clarke et al., Oxidative decolorization of acid azo dyes by a Mn oxide containing waste. Environ. Sci. Technol. 44(3), 1116–1122 (2010)Google Scholar
  7. 7.
    S. Pourmasoud et al., Investigation of optical properties and the photocatalytic activity of synthesized YbYO4 nanoparticles and YbVO4/NiWO4 nanocomposites by polymeric capping agents. J. Mol. Struct. 1157, 607–615 (2018)Google Scholar
  8. 8.
    A. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis: recent advances and applications. Catalysts 3(1), 189–218 (2013)Google Scholar
  9. 9.
    M. Rahimi-Nasrabadi et al., Nanocrystalline Ce-doped copper ferrite: synthesis, characterization, and its photocatalyst application. J. Mater. Sci.: Mater. Electron. 27(11), 11691–11697 (2016)Google Scholar
  10. 10.
    M. Eghbali-Arani et al., Ultrasound-assisted synthesis of YbVO4 nanostructure and YbVO4/CuWO4 nanocomposites for enhanced photocatalytic degradation of organic dyes under visible light. Ultrason. Sonochem. 43, 120–135 (2018)Google Scholar
  11. 11.
    K. Bourzac, Nanotechnology: carrying drugs. Nature 491, S58–S60 (2012)Google Scholar
  12. 12.
    L. Zhang et al., Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. 9(3), 479–489 (2007)Google Scholar
  13. 13.
    J. You, Y. Zhang, Z. Hu, Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles. Colloids Surf. B 85(2), 161–167 (2011)Google Scholar
  14. 14.
    J. Schneider et al., Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114(19), 9919–9986 (2014)Google Scholar
  15. 15.
    J. Ye et al., Electroluminescent and transport mechanisms of n-ZnO/p-Si heterojunctions. Appl. Phys. Lett. 88(18), 182112 (2006)Google Scholar
  16. 16.
    M.H. Habibi et al., Fabrication, characterization of two nano-composite CuO–ZnO working electrodes for dye-sensitized solar cell. Spectrochim. Acta A 116, 374–380 (2013)Google Scholar
  17. 17.
    F. Sedighi et al., Synthesis and characterization of CuWO4 nanoparticle and CuWO4/NiO nanocomposite using co-precipitation method; application in photodegradation of organic dye in water. J. Mater. Sci.: Mater. Electron. 29(16), 13737–13745 (2018)Google Scholar
  18. 18.
    Z. Xu et al., CuO–ZnO micro/nanoporous array-film-based chemosensors: new sensing properties to H2S. Chem. Eur. J. 20(20), 6040–6046 (2014)Google Scholar
  19. 19.
    S. Jeong et al., Electrodeposited ZnO/Cu2O heterojunction solar cells. Electrochim. Acta 53(5), 2226–2231 (2008)Google Scholar
  20. 20.
    N. Khalid et al., Cu-doped TiO2 nanoparticles/graphene composites for efficient visible-light photocatalysis. Ceram. Int. 39(6), 7107–7113 (2013)Google Scholar
  21. 21.
    Q. Qi et al., Humidity sensing properties of KCl-doped Cu–Zn/CuO–ZnO nanoparticles. Sens. Actuators B 137(1), 21–26 (2009)Google Scholar
  22. 22.
    S.K. Pradhan, J. Panwar, S. Gupta, Enhanced heavy metal removal using silver-yttrium oxide nanocomposites as novel adsorbent system. J. Environ. Chem. Eng. 5(6), 5801–5814 (2017)Google Scholar
  23. 23.
    S. Tada et al., Ag addition to CuO-ZrO2 catalysts promotes methanol synthesis via CO2 hydrogenation. J. Catal. 351, 107–118 (2017)Google Scholar
  24. 24.
    S. Tada, S. Satokawa, Effect of Ag loading on CO2-to-methanol hydrogenation over Ag/CuO/ZrO2. Catal. Commun. 113, 41–45 (2018)Google Scholar
  25. 25.
    A. Modwi et al., Effect of annealing on physicochemical and photocatalytic activity of Cu 5% loading on ZnO synthesized by sol–gel method. J. Mater. Sci.: Mater. Electron. 27(12), 12974–12984 (2016)Google Scholar
  26. 26.
    A. Modwi et al., Influence of annealing temperature on the properties of ZnO synthesized via 2.3. dihydroxysuccinic acid using flash sol-gel method. J. Ovonic Res. 12(2), 59–66 (2016)Google Scholar
  27. 27.
    A. Meng et al., Cr-doped ZnO nanoparticles: synthesis, characterization, adsorption property, and recyclability. ACS Appl. Mater. Interfaces 7(49), 27449–27457 (2015)Google Scholar
  28. 28.
    Y. Hui et al., Results in PhysicsGoogle Scholar
  29. 29.
    V. Vaiano et al., Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag. Appl. Catal. B 225, 197–206 (2018)Google Scholar
  30. 30.
    F. Sun et al., One-step microwave synthesis of Ag/ZnO nanocomposites with enhanced photocatalytic performance. J. Mater. Sci. 47(20), 7262–7268 (2012)Google Scholar
  31. 31.
    K. Ravichandran et al., Enhancement of photocatalytic efficiency of ZnO nanopowders through Ag + graphene addition. Mater. Technol. 31(14), 865–871 (2016)Google Scholar
  32. 32.
    A. Gnanaprakasam, V. Sivakumar, M. Thirumarimurugan, A study on Cu and Ag doped ZnO nanoparticles for the photocatalytic degradation of brilliant green dye: synthesis and characterization. Water Sci. Technol. 74(6), 1426–1435 (2016)Google Scholar
  33. 33.
    A.K. Zak et al., X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sci. 13(1), 251–256 (2011)Google Scholar
  34. 34.
    R. Zamiri et al., Ba-doped ZnO nanostructure: X-ray line analysis and optical properties in visible and low frequency infrared. Ceram. Int. 42(11), 12860–12867 (2016)Google Scholar
  35. 35.
    J.B. Condon, Surface Area and Porosity Determinations by Physisorption: Measurements and Theory (Elsevier, Amsterdam, 2006)Google Scholar
  36. 36.
    G. Xiong et al., Synthesis of mesoporous ZnO (m-ZnO) and catalytic performance of the Pd/m-ZnO catalyst for methanol steam reforming. Energy Fuels 23(3), 1342–1346 (2009)Google Scholar
  37. 37.
    S.P. Lim et al., Enhanced photovoltaic performance of silver@ titania plasmonic photoanode in dye-sensitized solar cells. RSC Adv. 4(72), 38111–38118 (2014)Google Scholar
  38. 38.
    T. Liu et al., RGO/Ag2S/TiO2 ternary heterojunctions with highly enhanced UV-NIR photocatalytic activity and stability. Appl. Catal. B 204, 593–601 (2017)Google Scholar
  39. 39.
    J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3(1), 37–46 (1968)Google Scholar
  40. 40.
    Z. Han et al., Ag/ZnO flower heterostructures as a visible-light driven photocatalyst via surface plasmon resonance. Appl. Catal. B 126, 298–305 (2012)Google Scholar
  41. 41.
    S. Wang et al., Synthesis and photocatalysis of hierarchical heteroassemblies of ZnO branched nanorod arrays on Ag core nanowires. Nanoscale 4(19), 5895–5901 (2012)Google Scholar
  42. 42.
    A. Modwi et al., Adsorption kinetics and photocatalytic degradation of malachite green (MG) via Cu/ZnO nanocomposites. J. Environ. Chem. Eng. 5(6), 5954–5960 (2017)Google Scholar
  43. 43.
    A. Hezam et al., Heterogeneous growth mechanism of ZnO nanostructures and the effects of their morphology on optical and photocatalytic properties. CrystEngComm 19(24), 3299–3312 (2017)Google Scholar
  44. 44.
    S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, Novel silver-doped CdMoO4: synthesis, characterization, and its photocatalytic performance for methyl orange degradation through the sonochemical method. J. Mater. Sci.: Mater. Electron. 27(1), 474–480 (2016)Google Scholar
  45. 45.
    A. Modwi et al., Lowering energy band gap and enhancing photocatalytic properties of Cu/ZnO composite decorated by transition metals. J. Mol. Struct. (2018). Google Scholar
  46. 46.
    J. Kaur, S. Singhal, Facile synthesis of ZnO and transition metal doped ZnO nanoparticles for the photocatalytic degradation of Methyl Orange. Ceram. Int. 40(5), 7417–7424 (2014)Google Scholar
  47. 47.
    N. Jaafar et al., Direct in situ activation of Ag0 nanoparticles in synthesis of Ag/TiO2 and its photoactivity. Appl. Surf. Sci. 338, 75–84 (2015)Google Scholar
  48. 48.
    L. Sun et al., Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity. J. Hazard. Mater. 171(1–3), 1045–1050 (2009)Google Scholar
  49. 49.
    X. Chen et al., Supported silver nanoparticles as photocatalysts under ultraviolet and visible light irradiation. Green Chem. 12(3), 414–419 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. Modwi
    • 1
    Email author
  • Kamal K. Taha
    • 1
    • 2
  • L. Khezami
    • 1
  • M. Bououdina
    • 4
  • A. Houas
    • 1
    • 3
  1. 1.Department of Chemistry, College of SciencesAl Imam Mohammad Ibn Saud Islamic University (IMSIU)RiyadhSaudi Arabia
  2. 2.Chemical & Industrial Chem. Department, College of Applied & Industrial SciencesBahri UniversityKhartoumSudan
  3. 3.Unité de Recherche Catalyse et Matériaux pour l’Environnement et les Procédés (URCMEP)Université de GabèsGabèsTunisia
  4. 4.Department of Physics, College of ScienceUniversity of BahrainZallaqKingdom of Bahrain

Personalised recommendations