Thermal stability improvement and crystallization behavior of Ag doped Ge2Sb2Te5 phase change materials

  • Palwinder Singh
  • A. P. Singh
  • Anup ThakurEmail author


Ge2Sb2Te5 is a potential candidate for various technological applications because of its splendid set of properties. (Ge2Sb2Te5)100−xAgx (x = 0 and 3) bulk alloys and thin films are prepared using melt quenching and thermal evaporation method, respectively. The structural analysis of as-deposited and annealed (at 150 and 160 °C) thin films is accomplished using X-ray diffraction. Phase transition is observed in thin films annealed at 160 °C. The thermal behavior of the samples is investigated using differential thermal analysis (DTA). Crystallization temperature of the bulk alloys is obtained from DTA curve analysis. Activation energy of crystallization has been evaluated using different thermal kinetic approaches: Kissinger, Moynihan and Augis and Benett. It is found that with Ag doping, the crystallization temperature and activation energy of crystallization increased which enhanced the thermal stability of phase change material.



This work is financially supported by Department of Science and Technology, New Delhi under Research Project (Sanction No. SB/FTP/PS-075/2013 dated 29/05/2014). PS is thankful to Department of Science and Technology, New Delhi for providing financial support as SRF under above mentioned project.


  1. 1.
    S.R. Ovshinsky, Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450–1453 (1968)CrossRefGoogle Scholar
  2. 2.
    N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, M. Takao, High speed overwritable phase change optical disk material. Jpn. J. Appl. Phys. 26(S4), 61–66 (1987)CrossRefGoogle Scholar
  3. 3.
    M. Wuttig, N. Yamada, Phase-change materials for rewriteable data storage. Nat. Mater. 6(11), 824–832 (2007)CrossRefGoogle Scholar
  4. 4.
    D. Lencer, M. Salinga, M. Wuttig, Design rules for phase-change materials in data storage applications. Adv. Mater. 23(18), 2030–2058 (2011)CrossRefGoogle Scholar
  5. 5.
    M. Wuttig, H. Bhaskaran, T. Taubner, Phase-change materials for non-volatile photonic applications. Nat. Photonics 11(8), 465–476 (2017)CrossRefGoogle Scholar
  6. 6.
    S. Raoux, F. Xiong, M. Wuttig, E. Pop, Phase change materials and phase change memory. Mater. Res. Bull. 39(8), 703–710 (2014)CrossRefGoogle Scholar
  7. 7.
    H.F. Hamann, M. O’Boyle, Y.C. Martin, M. Rooks, H.K. Wickramasinghe, Ultra-high-density phase-change storage and memory. Nat. Mater. 5(5), 383–387 (2006)CrossRefGoogle Scholar
  8. 8.
    Z. Sun, J. Zhou, R. Ahuja, Unique melting behavior in phase-change materials for rewritable data storage. Phys. Rev. Lett. 98(5), 055505 (2007)CrossRefGoogle Scholar
  9. 9.
    S. Raoux, W. We lnic, D. Ielmini, Phase change materials and their application to nonvolatile memories. Chem. Rev. 110(1), 240–267 (2009)CrossRefGoogle Scholar
  10. 10.
    P. Singh, A.P. Singh, N. Kanda, M. Mishra, G. Gupta, A. Thakur, High transmittance contrast in amorphous to hexagonal phase of Ge2Sb2Te5: reversible NIR-window. Appl. Phys. Lett. 111(26), 261102 (2017)CrossRefGoogle Scholar
  11. 11.
    P. Singh, A.P. Singh, J. Sharma, A. Kumar, M. Mishra, G. Gupta, A. Thakur, Reduction of rocksalt phase in Ag-doped Ge2Sb2Te5: a potential material for reversible near-infrared window. Phys. Rev. Appl. 10(5), 054070 (2018)CrossRefGoogle Scholar
  12. 12.
    Y.G. Chen, T.S. Kao, B. Ng, X. Li, X.G. Luo, B. Luk’Yanchuk, S.A. Maier, M.H. Hong, Hybrid phase change plasmonic crystals for active tuning of lattice resonances. Opt. Express 21(11), 13691–13698 (2013)CrossRefGoogle Scholar
  13. 13.
    Y. Chen, X. Li, Y. Sonnefraud, A.I. Fern´andez-Dom´ınguez, X. Luo, M. Hong, S.A. Maier, Engineering the phase front of light with phase-change material based planar lenses. Sci. Rep. 5, 8660 (2015)CrossRefGoogle Scholar
  14. 14.
    Q. Wang, E.T. Rogers, B. Gholipour, C.M. Wang, G. Yuan, J. Teng, N.I. Zheludev, Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics 10(1), 60–65 (2016)CrossRefGoogle Scholar
  15. 15.
    P. Hosseini, C.D. Wright, H. Bhaskaran, An optoelectronic framework enabled by low-dimensional phase change films. Nature 511, 206–211 (2014)CrossRefGoogle Scholar
  16. 16.
    X. Zhou, L. Wu, Z. Song, F. Rao, M. Zhu, C. Peng, D. Yao, S. Song, B. Liu, S. Feng, Carbon-doped Ge2Sb2Te5 phase change material: a candidate for highdensity phase change memory application. Appl. Phys. Lett. 101(14), 142104 (2012)CrossRefGoogle Scholar
  17. 17.
    K. Darmawikarta, S. Raoux, P. Tchoulfian, T. Li, J.R. Abelson, S.G. Bishop, Evolution of subcritical nuclei in nitrogen-alloyed Ge2Sb2Te5. J. Appl. Phys. 112(12), 124907 (2012)CrossRefGoogle Scholar
  18. 18.
    J. Fu, X. Shen, Q. Nie, G. Wang, L. Wu, S. Dai, T. Xu, R. Wang, Crystallization characteristics of Mg-dopedGe2Sb2Te5 films for phase change memory applications. Appl. Surf. Sci. 264, 269–272 (2013)CrossRefGoogle Scholar
  19. 19.
    J.L. Battaglia, V. Schick, C. Rossignol, A. Kusiak, I. Aubert, A. Lamperti, C. Wiemer, Thermal resistanceat Al-Ge2Sb2Te5 interface. Appl. Phys. Lett. 102(18), 181907 (2013)CrossRefGoogle Scholar
  20. 20.
    S.J. Park, I.S. Kim, S.K. Kim, S.M. Yoon, B.G. Yu, S.Y. Choi, Phase transition characteristics and device performance of Si-doped Ge2Sb2Te5. Semicond. Sci. Technol. 23(10), 105006 (2008)Google Scholar
  21. 21.
    S. Cheng, S. Wei, X. Yi, J. Wang, C. Liu, J. Li, T. Yang, Investigations on phase change characteristicsof Ti-doped Ge2Sb2Te5 system. J. Phys. D 48(47), 475108 (2015)CrossRefGoogle Scholar
  22. 22.
    Q. Wang, B. Liu, Y. Xia, Y. Zheng, R. Huo, Q. Zhang, S. Song, Y. Cheng, Z. Song, S. Feng, Cr-dopedGe2Sb2Te5 for ultra-long data retention phase change memory. Appl. Phys. Lett. 107(22), 222101 (2015)CrossRefGoogle Scholar
  23. 23.
    Y. Zhu, Z. Zhang, S. Song, H. Xie, Z. Song, X. Li, L. Shen, L. Li, L. Wu, B. Liu, Ni-doped GST materials for high speed phase change memory applications. Mater. Res. Bull. 64, 333–336 (2015)CrossRefGoogle Scholar
  24. 24.
    G. Wang, Q. Nie, X. Shen, R. Wang, L. Wu, J. Fu, T. Xu, S. Dai, Phase change behaviors of Zn-doped Ge2Sb2Te5 films. Appl. Phys. Lett. 101(5), 051906 (2012)CrossRefGoogle Scholar
  25. 25.
    E. Vinod, K. Ramesh, K. Sangunni, Structural transition and enhanced phase transition properties of Se doped Ge2Sb2Te5 alloys. Sci. Rep. 5, 8050 (2015)CrossRefGoogle Scholar
  26. 26.
    K.H. Song, S.W. Kim, J.H. Seo, H.Y. Lee, Characteristics of amorphous Ag0.1(Ge2Sb2Te5)0.9 thin film and its ultrafast crystallization. J. Appl. Phys. 104(10), 103516 (2008)CrossRefGoogle Scholar
  27. 27.
    P. Singh, R. Kaur, P. Sharma, V. Sharma, M. Mishra, G. Gupta, A. Thakur, Optical band gap tuning of Ag doped Ge2Sb2Te5 thin films. J. Mater. Sci. Mater. Electron. 28, 11300–11305 (2017)CrossRefGoogle Scholar
  28. 28.
    P. Singh, P. Sharma, V. Sharma, A. Thakur, Linear and non-linear optical properties of Ag-doped Ge2Sb2Te5 thin films estimated by single transmission spectra. Semicond. Sci. Technol. 32(4), 045015 (2017)CrossRefGoogle Scholar
  29. 29.
    S. Guo, X. Ding, J. Zhang, Z. Hu, X. Ji et al., Intrinsic evolutions of dielectric function and electronictransition in tungsten doping Ge2Sb2Te5 phase change films discovered by ellipsometry at elevated temperatures. Appl. Phys. Lett. 106(5), 052105 (2015)CrossRefGoogle Scholar
  30. 30.
    N. Mehta, A. Kumar, Some new observations on activation energy of crystal growth for thermally activated crystallization. J. Phys. Chem. B 120(6), 1175–1182 (2016)CrossRefGoogle Scholar
  31. 31.
    H.E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29(11), 1702–1706 (1957)CrossRefGoogle Scholar
  32. 32.
    C.T. Moynihan, A.J. Easteal, J. Wilder, J. Tucker, Dependence of the glass transition temperature on heating and cooling rate. J. Phys. Chem. 78(26), 2673–2677 (1974)CrossRefGoogle Scholar
  33. 33.
    J. Augis, J. Bennett, Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J. Ther. Anal. Calorim. 13(2), 283–292 (1978)CrossRefGoogle Scholar
  34. 34.
    P. Singh, R. Kaur, P. Sharma, V. Sharma, A. Thakur, Effect of visible light on the structural and optical properties of (Ge2Sb2Te5)100−xAgx (x = 0, 1 and 3) thin films. J. Mater. Sci. Mater. Electron. 29(2), 1042–1147 (2018)CrossRefGoogle Scholar
  35. 35.
    R. Kaur, P. Singh, K. Singh, A. Kumar, A. Thakur, Optical band gap tuning of Sb-Se thin films for xerographic based applications. Superlattices Microstruct. 98, 187–193 (2016)CrossRefGoogle Scholar
  36. 36.
    A. Mendoza-Galvan, J. Gonzalez-Hernandez, Drude-like behavior of Ge:Sb:Te alloys in the infrared. J. Appl. Phys. 87(2), 760 (2000)CrossRefGoogle Scholar
  37. 37.
    K. Vinod, R. Ramesh, K. Ganesan, Sangunni, Direct hexagonal transition of amorphous (Ge2Sb2Te5)0.9Se0.1 thin films. Appl. Phys. Lett. 104(6), 063505 (2014)CrossRefGoogle Scholar
  38. 38.
    M. Avrami, Granulation, phase change, and microstructure kinetics of phase change. III. J. Chem. Phys. 9(2), 177–184 (1941)CrossRefGoogle Scholar
  39. 39.
    W.A. Johnson, Reaction kinetics in process of nucleation and growth. Trans. AIME 135, 416–458 (1939)Google Scholar
  40. 40.
    N. Ohshima, Crystallization of germanium-antimony-tellurium amorphous thin film sandwiched between various dielectric protective films. J. Appl. Phys. 79(11), 8357 (1996)CrossRefGoogle Scholar
  41. 41.
    M. Lankhorst, Modelling glass transition temperatures of chalcogenide glasses. Applied to phase-change optical recording materials. J. Non-Cryst. Solids 297(2), 210–219 (2002)CrossRefGoogle Scholar
  42. 42.
    M.L. Lee, K.T. Yong, C.L. Gan, L.H. Ting, S.B.M. Daud, L. Shi, Crystallization and thermal stability of Sn-doped Ge2Sb2Te5 phase change material. J. Phys. D 41(21), 215402 (2008)CrossRefGoogle Scholar
  43. 43.
    J.G. Speight, Lange’s Handbook of Chemistry (McGraw-Hill, New York, 2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsPunjabi UniversityPatialaIndia
  2. 2.Advanced Materials Research Laboratory, Department of Basic and Applied SciencesPunjabi UniversityPatialaIndia
  3. 3.Department of PhysicsDr. B. R. Ambedkar National Institute of TechnologyJalandharIndia

Personalised recommendations