Advertisement

Enhanced electrical and fatigue properties of La-modified (100)-oriented PZT thin films with various Zr/Ti ratio

  • Xing Wang
  • Jiangang Zhou
  • Liping Qi
  • Da Chen
  • Qiusen Wang
  • Jiao Dou
  • Fuan Wang
  • Helin Zou
Article
  • 13 Downloads

Abstract

Pb1−x(LaxZryTi1−y)O3 (PLZT) (x = 0%, 2%, 4%; y = 0.45, 0.52, 0.60) thin films were fabricated by sol–gel process to investigate the effects of La-doped and Zr/Ti ratio on crystalline orientation, microstructure, and electrical properties of lead zirconate titanate films. The results of X-ray diffraction analysis showed that the orientation of the films with various La concentration change with the Zr/Ti ratio. The Zr-rich composition (y = 0.60) with the fixed 2% La doping concentration has the most (100) preferential orientation. Scanning electron microscope analysis showed that the films exhibit dense perovskite structure when the doping concentration was less than 4%. The maximum dielectric constant (1364.65 at 100 Hz), optimized ferroelectric properties, and a low leakage current density of 8.63 × 10−8 A cm−2 were obtained for 2% La-doped film with a Zr/Ti ratio of 60/40. The lowest value of coercive field (Ec) was generated in the film fabricated with a Zr/Ti ratio of 52/48 when the La doping concentration was 2%. Fatigue resistance was also improved with 2% La dopant for the films processed by a Zr/Ti ratio of 52/48 and 60/40.

Notes

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. 51775088).

References

  1. 1.
    I. Bretos, R. Jimenez, A. Wu, A.I. Kingon, P.M. Vilarinho, M.L. Calzada, Adv. Mater. 26, 1405–1409 (2014)CrossRefGoogle Scholar
  2. 2.
    T. Fujii, Y. Hishinuma, T. Mita, T. Naono, Sens. Actuators A 163, 220–225 (2010)CrossRefGoogle Scholar
  3. 3.
    B.L. Peng, H.Q. Fan, Q. Zhang, Adv. Funct. Mater. 23, 2987–2992 (2013)CrossRefGoogle Scholar
  4. 4.
    W. Gong, J.F. Li, X. Chu, Z. Gui, L. Li, Acta. Mater. 52, 2787–2793 (2004)CrossRefGoogle Scholar
  5. 5.
    K.K. Maurya, S.K. Halder, S. Sen, A. Bose, S. Bysakh, Appl. Surf. Sci. 313, 196–206 (2014)CrossRefGoogle Scholar
  6. 6.
    Z.J. Wang, H. Kokawa, R. Maeda, Acta. Mater. 53, 593–600 (2005)CrossRefGoogle Scholar
  7. 7.
    Z. Wu, J. Zhou, W. Chen, J. Shen, H. Yang, S. Zhang et al., Appl. Surf. Sci. 388, 579–583 (2016)CrossRefGoogle Scholar
  8. 8.
    A. Anil, K. Vani, V. Kumar, Appl. Phys. A 122, 5811–5815 (2016)CrossRefGoogle Scholar
  9. 9.
    J. Zhong, S. Kotru, H. Han, J. Jackson, R.K. Pandey, Integr. Ferroelectr. 130, 1–11 (2011)CrossRefGoogle Scholar
  10. 10.
    R. Laishram, J. Phys. Chem. Solids 104, 8–12 (2017)CrossRefGoogle Scholar
  11. 11.
    A. Bose, M. Sreemany, S. Bysakh, P. Davies, J. Am. Ceram. Soc. 94, 4066–4077 (2011)CrossRefGoogle Scholar
  12. 12.
    J. Wu, J. Zhu, D. Xiao, J. Zhu, J. Tan, Q. Zhang, J. Appl. Phys. 101, 94–107 (2007)Google Scholar
  13. 13.
    S. Tong, M. Narayanan, B. Ma, S. Liu, R.E. Koritala, U. Balachandran et al., Mater. Chem. Phys. 140, 427–430 (2013)CrossRefGoogle Scholar
  14. 14.
    N. Kotova, Y. Podgorny, D. Seregin, A. Sigov, A. Vishnevskiy, K. Vorotilov, Ferroelectrics 465, 54–59 (2014)CrossRefGoogle Scholar
  15. 15.
    Z.J. WANG, Y. AOKI, H. KOKAWA, M. ICHIKI, R. MAEDA, J. Electroceram. 13, 41–45 (2004)CrossRefGoogle Scholar
  16. 16.
    P. Khaenamkaew, S. Muensit, I.K. Bdikin, A.L. Kholkin, Mater. Chem. Phys. 102, 159–164 (2007)CrossRefGoogle Scholar
  17. 17.
    C.M. Foster, G.R. Bai, R. Csencsits, J. Vetrone, R. Jammy, L.A. Wills et al., J. Appl. Phys. 81, 2349–2357 (1997)CrossRefGoogle Scholar
  18. 18.
    Q. Li, X. Wang, F. Wang, J. Dou, W. Xu, H. Zou, J. Ceram. Sci. Technol. 08, 519–524 (2017)Google Scholar
  19. 19.
    M. Es-Souni, M. Abed, C. H. Solterbeck, A. Piorra, Mater. Sci. Eng. B 94, 229–236 (2002)CrossRefGoogle Scholar
  20. 20.
    D.W. Wang, D.Q. Zhang, J. Yuan, Q.L. Zhao, H.M. Liu, Z.Y. Wang, M.S. Cao, Chin. Phys. B 18, 2596–2602 (2009)CrossRefGoogle Scholar
  21. 21.
    S.K.S. Parashar, R.N.P. Choudhary, B.S. Murty, Mater. Sci. Eng. B 110, 58–63 (2004)CrossRefGoogle Scholar
  22. 22.
    B. Ma, S. Liu, S. Tong, M. Narayanan, U. Balachandran, J. Appl. Phys. 112, 114–117 (2012)Google Scholar
  23. 23.
    G.H. Khorrami, A.K. Zak, A. Kompany, R. yousefi, Ceram. Int. 38, 5683–5690 (2012)CrossRefGoogle Scholar
  24. 24.
    Z.J. Wang, Y. Aoki, L.J. Yan, H. Kokawa, R. Maeda, J. Cryst. Growth 267, 92–99 (2004)CrossRefGoogle Scholar
  25. 25.
    F. KULCSAR, J. Am. Ceram. Soc. 42, 343–349 (1959)CrossRefGoogle Scholar
  26. 26.
    R. Ranjan, R. Kumar, B. Behera, R.N.P. Choudhary, Mater. Chem. Phys. 115, 473–477 (2009)CrossRefGoogle Scholar
  27. 27.
    B. Wen, Y. Zhang, X. Liu, L. Ma, X. Wang, Ceram. Int. 39, 219–225 (2013)CrossRefGoogle Scholar
  28. 28.
    J. Parui, S.B. Krupanidhi, J. Appl. Phys. 100, 044102 (2006)CrossRefGoogle Scholar
  29. 29.
    B. Sahoo, P.K. Panda, J. Adv. Ceram. 2, 37–41 (2013)CrossRefGoogle Scholar
  30. 30.
    F. Chen, J. Cheng, S. Yu, Z. Meng, J. Eur. Ceram. Soc. 30, 453–457 (2010)CrossRefGoogle Scholar
  31. 31.
    P. Kumar, P. Singh, S. Singh, J.K. Juneja, C. Prakash, K.K. Raina, Ceram. Int. 41, 5177–5181 (2015)CrossRefGoogle Scholar
  32. 32.
    R. Thomas, S. Mochizuki, T. Mihara, T. Ishida, Thin Solid Films 443, 14–22 (2003)CrossRefGoogle Scholar
  33. 33.
    R. Singh, T.C. Goel, S. Chandra, Mater. Chem. Phys. 110, 120–127 (2008)CrossRefGoogle Scholar
  34. 34.
    W. Zhu, I. Fujii, W. Ren, S.T. McKinstry, J. Am. Ceram. Soc. 95, 2906–2913 (2012)CrossRefGoogle Scholar
  35. 35.
    Y. Wu, X. Wang, C. Zhong, L. Li, J. Eur. Ceram. Soc. 38, 1434–1441 (2018)CrossRefGoogle Scholar
  36. 36.
    Y. Masuda, T. Nozaka, Jpn. J. Appl. Phys. 42, 5941–5946 (2003)CrossRefGoogle Scholar
  37. 37.
    L. Zhou, G. Rixecker, F. Aldinger, Key Eng. Mater. 336, 359–362 (2007)CrossRefGoogle Scholar
  38. 38.
    Q. Jiang, W. Cao, L.E. Cross, J. Am. Ceram. Soc. 77, 211–215 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xing Wang
    • 1
  • Jiangang Zhou
    • 2
  • Liping Qi
    • 3
  • Da Chen
    • 1
  • Qiusen Wang
    • 1
  • Jiao Dou
    • 1
  • Fuan Wang
    • 1
  • Helin Zou
    • 1
  1. 1.Key Laboratory for Micro/Nano Technology and Systems of Liaoning ProvinceDalian University of TechnologyDalianPeople’s Republic of China
  2. 2.College of Physics Science and TechnologyDalian UniversityDalianPeople’s Republic of China
  3. 3.Department of Biomedical EngineeringDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations